Benzo[a]pyrene treatment modulates Nrf2/Keap1 axis and changes the metabolic profile in rat lung cancer
2023; Elsevier BV; Volume: 373; Linguagem: Inglês
10.1016/j.cbi.2023.110373
ISSN1872-7786
AutoresKaveri R. Washimkar, Manendra Singh Tomar, Sharmeen Ishteyaque, Akhilesh Kumar, Ashutosh Shrivastava, Madhav Nilakanth Mugale,
Tópico(s)Lipid metabolism and biosynthesis
ResumoLung cancer is an aggressive malignancy and the leading cause of cancer-related deaths. Benzo[a]pyrene (B[a]P), a polycyclic hydrocarbon, plays a pivotal role in lung carcinogenesis. Uncovering the molecular mechanism underlying the pathophysiology of B[a]P induced malignancy is crucial. Male Sprague Dawley rats were induced with B[a]P to generate a lung cancer model. The B[a]P administered rats show increased body and lung weight, loss of normal pulmonary architecture, and decreased survival. This study demonstrated that B[a]P upregulates activating transcription factor-6 (ATF6) and C/EBP Homologous Protein (CHOP) and induces endoplasmic reticulum (ER) stress. B[a]P also dysregulated mitochondrial homeostasis by upregulating, PTEN-induced putative kinase-1 (PINK1) and Parkin. B[a]P affected the levels of superoxide dismutase (SOD), reduced glutathione (GSH), malondialdehyde (MDA), and increased oxidative stress. B[a]P exposure downregulated Kelch-like ECH-associated protein 1 (Keap1) and upregulated nuclear factor erythroid 2–related factor 2 (Nrf2) and Heme oxygenase-1(HO1). The metabolomic study identified that biosynthesis of nucleotide, amino acids, pentose phosphate pathway (PPP), tricarboxylic acid cycle (TCA), and glutathione metabolism were up-accumulated. On the other hand, lower accumulation of fatty acids e.g., palmitic acid, stearic acid, and oleic acid were reported in the B[a]P induced group. Overall, the results of this study indicate that B[a]P treatment affects several signaling and metabolic pathways, whose dysregulation might be involved in lung cancer induction.
Referência(s)