Polyfluoroalkyl substances requiring a renewed focus on groundwater‐surface water interactions
2023; Wiley; Volume: 43; Issue: 1 Linguagem: Inglês
10.1111/gwmr.12569
ISSN1745-6592
AutoresCraig Divine, Amar Wadhawan, Vivek Francis Pulikkal, Prashanth Khambhammettu, Jay C. Erickson,
Tópico(s)Soil and Water Nutrient Dynamics
ResumoGroundwater Monitoring & RemediationVolume 43, Issue 1 p. 14-31 Advances in Remediation Solutions Polyfluoroalkyl substances requiring a renewed focus on groundwater-surface water interactions Craig Divine, Corresponding Author Craig Divine [email protected] Search for more papers by this authorAmar Wadhawan, Amar Wadhawan [email protected] Search for more papers by this authorVivek Pulikkal, Vivek Pulikkal [email protected] Search for more papers by this authorPrashanth Khambhammettu, Prashanth Khambhammettu [email protected] Search for more papers by this authorJay Erickson, Jay Erickson [email protected] Search for more papers by this author Craig Divine, Corresponding Author Craig Divine [email protected] Search for more papers by this authorAmar Wadhawan, Amar Wadhawan [email protected] Search for more papers by this authorVivek Pulikkal, Vivek Pulikkal [email protected] Search for more papers by this authorPrashanth Khambhammettu, Prashanth Khambhammettu [email protected] Search for more papers by this authorJay Erickson, Jay Erickson [email protected] Search for more papers by this author First published: 08 February 2023 https://doi.org/10.1111/gwmr.12569Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL References Ahmadireskety, A., B.F. Da Silva, N.M. Robey, T.E. Douglas, J. Aufmuth, H.M. Solo-Gabriele, R.A. Yost, T.G. Townsend, and J.A. Bowden. 2022. Per- and polyfluoroalkyl substances (PFAS) in street sweepings. Environmental Science & Technology 56, no. 10: 6069– 6077. https://doi.org/10.1021/acs.est.1c03766 Anderson, R.H. 2021. The case for direct measures of soil-to-groundwater contaminant mass discharge at AFFF-impacted sites. Environmental Science & Technology 55, no. 10: 6580– 6583. Anderson, M.P., W.W. Woessner, and R.J. Hunt. 2015. Applied Groundwater Modeling: Simulation of Flow and Advective Transport. San Diego, CA: Academic Press. Anderson, M.P. 1983. Ground-water modeling – The emperor has no clothes a. Groundwater 21, no. 6: 666– 669. Baduel, C., C.J. Paxman, and C.J.F. Mueller. 2015. Perfluoroalkyl substances in a firefighting training ground (FTG), distribution and potential future release. Journal of Hazardous Materials 296: 46– 53. Bai, X., and Y. Son. 2021. Perfluoroalkyl substances (PFAS) in surface water and sediments from two urban watersheds in Nevada, USA. Science of the Total Environ. 751: 141622. https://doi.org/10.1016/j.scitotenv.2020.141622 Boano, F., J.W. Harvey, A. Marion, A.I. Packman, R. Revelli, L. Ridolfi, and A. Wörman. 2014. Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications. Reviews of Geophysics 52, no. 4: 603– 679. Bolan, N., B. Sarkar, M. Vithanage, G. Singh, D.C.W. Tsang, R. Mukhopadhyay, K. Ramadass, A. Vinu, Y. Sun, S. Ramanayaka, S.A. Hoang, Y. Yan, Y. Li, J. Rinklebe, H. Li, and M.B. Kirkham. 2021. Distribution, behaviour, bioavailability and remediation of poly- and per-fluoroalkyl substances (PFAS) in solid biowastes and biowaste-treated soil. Environment International 155: 106600. https://doi.org/10.1016/j.envint.2021.106600 Bonanno, E., G. Bloschl, and J. Klaus. 2021. Flow directions of stream-groundwater exchange in a headwater catchment during the hydrologic year. Hydrological Processes 35: e14310. https://doi.org/10.1002/hyp.14310 Boone, J.S., C. Vigo, T. Boone, C. Byrne, J. Ferrario, R. Benson, J. Donohue, J.E. Simmons, D.W. Kolpin, E.T. Furlong, and S.T. Glassmeyer. 2019. Per- and polyfluoroalkyl substances in source and treated drinking waters of the United States. Science of the Total Environment 653: 359– 369. https://doi.org/10.1016/j.scitotenv.2018.10.245 Brunner, P., and C.T. Simmons. 2012. HydroGeoSphere: A fully integrated, physically based hydrological model. Ground Water 50, no. 2: 170– 176. Brunner, P., C.T. Simmons, P.G. Cook, and R. Therrien. 2010. Modeling surface water-groundwater interaction with MODFLOW: Some considerations. Groundwater 48, no. 2: 174– 180. Brusseau, M.L. 2021. Simulating PFAS transport influenced by rate-limited multi-process retention. Water Research 168: 115179. https://doi.org/10.1016/j.watres.2019.115179 Brusseau, M.L., and B. Guo. 2022. PFAS concentrations in soil versus soil porewater: Mass distributions and the impact of adsorption at air-water interfaces. Chemosphere 302: 134938. https://doi.org/10.1016/j.chemosphere.2022.134938 Calver, A. 2001. Riverbed permeabilities: Information from pooled data. Ground Water 39, no. 4: 546– 553. Carlson, G.L., and S. Tupper. 2020. Ski wax use contributes to environmental contamination by per- and polyfluoroalkyl substances. Chemosphere 261: 128078. https://doi.org/10.1016/j.chemosphere.2020.128078 Chen, H., X. Wang, C. Zhang, R. Sun, J. Han, G. Han, W. Yang, and X. He. 2017. Occurrence and inputs of perfluoroalkyl substances (PFASs) from rivers and drain outlets to the Bohai Sea, China. Environmental Pollution 221: 234– 243. https://doi.org/10.1016/j.envpol.2016.11.070 Cheng, Y., L. Mai, X. Lu, Z. Li, Y. Guo, D. Chen, and F. Wang. 2021. Occurrence and abundance of poly- and perfluoroalkyl substances (PFASs) on microplastics (MPs) in Pearl River Estuary (PRE) region: Spatial and temporal variations. Envirnomental Pollutions 281: 117025. https://doi.org/10.1016/j.envpol.2021.117025 Cheng, F.Y., H.E. Preisendanz, M.L. Mashtare, L.S. Lee, and N.B. Basu. 2020. Nevertheless, they persisted: Can hyporheic zones increase the persistence of estrogens in streams? Water Resources Research 57, no. 6: e2020WR028518. https://doi.org/10.1029/2020WR028518 Chiaia-Hernández, A.D., C. Casado-Martinez, P. Lara-Martin, and T.D. Bucheli. 2022. Sediments: Sink, archive, and source of contaminants. Environmental Science and Pollution Research 29: 85761– 85765. https://doi.org/10.1007/s11356-022-24041-1 Chu, S., and R.J. Letcher. 2017. Side-chain fluorinated polymer surfactants in aquatic sediment and biosolid-augmented agricultural soil from the Great Lakes basin of North America. Science of the Total Environment 607-608: 262– 270. https://doi.org/10.1016/j.scitotenv.2017.06.252 Codling, G., H. Yuan, P.D. Jones, J.P. Giesy, and M. Hecker. 2020. Metals and PFAS in stormwater and surface runoff in a semi-arid Canadian city subject to large variations in temperature among seasons. Environmental Science and Pollution Research International 27, no. 15: 18232– 18241. https://doi.org/10.1007/s11356-020-08070-2 Coleman, T., B.L. Parker, C.H. Maldaner, and M.J. Mondanos. 2015. Groundwaterflow characterization in a fractured bedrock aquifer using active DTS tests insealed boreholes. Journal of Hydrology 528: 449– 462. Cremeans, M.M., J.F. Devlin, T.C. Osorno, U.S. McKnight, and P.L. Bjerg. 2020. A comparison of tools and methods for estimating groundwater-surface water exchange. Groundwater Monitoring & Remediation 40, no. 1: 24– 34. Cremeans, M.M., J.F. Devlin, T.C. Osorno, and R.W. Nairn. 2019. Assessment of bed hydraulics and metals loadings in a passive vertical flow bioreactor in Commerce, Oklahoma. Groundwater Monitoring and Remediation 39, no. 3: 40– 47. Cremeans, M.M., J.F. Devlin, U.S. McKnight, and P.L. Bjerg. 2018. Application of new point measurement device to quantify groundwater-surface water interactions. Journal of Contaminant Hydrology 211: 85– 93. Cremeans, M.M., and J.F. Devlin. 2017. Validation of a new device to quantify groundwater-surface water exchange. Journal of Contaminant Hydrology 206: 75– 80. Dalahmeh, S., S. Tirgani, A.J. Komakech, C.B. Niwagaba, and L. Ahrens. 2018. Per- and polyfluoroalkyl substances (PFASs) in water, soil and plants in wetlands and agricultural areas in Kampala, Uganda. The Science of the Total Environment 631–632: 660– 667. https://doi.org/10.1016/j.scitotenv.2018.03.024 D'Ambro, E.L., H.O.T. Pye, J.O. Bash, J. Bowyer, C. Allen, C. Efstathiou, R.C. Gilliam, L. Reynolds, B. Talgo, and B.N. Murphy. 2021. Characterizing the air emissions, transport, and deposition of per and polyfluoroalkyl substances from a fluoropolymer manufacturing facility. Environmental Science & Technology 55: 862– 870. Dauchy, X., V. Boiteux, C. Bach, C. Rosin, and J.F. Munoz. 2017. Per- and polyfluoroalkyl substances in firefighting foam concentrates and water samples collected near sites impacted by the use of these foams. Chemosphere 183: 53– 61. https://doi.org/10.1016/j.chemosphere.2017.05.056 Day-Lewis, F.D., and J.W. Lane, Jr. 2006. Using a Fiber-Optic Distributed Temperature Sensor to Understand Ground-Water/Surface-Water Interaction: U.S. Geological Survey Water Resources Discipline – Wester Region Research Seminar Series, November. Devlin, J.F., G. Tsoflias, M. McGlashan, and P. Schillig. 2009. An inexpensive multilevel array of sensors for direct ground water velocity measurement. Groundwater Monitoring & Remediation 29, no. 2: 73– 77. Devlin, J. 2003. A spreadsheet method of estimating best-fit hydraulic gradients using head data from multiple wells. Groundwater 41: 316– 320. Dong, D., S. Kancharla, J. Hooper, M. Tsianou, D. Bedrov, and P. Alexandridis. 2021. Controlling the self-assembly of perfluorinated surfactants in aqueous environments. Physical Chemistry Chemical Physics 23: 10029– 10039. https://doi.org/10.1039/D1CP00049G Doyle, J.D., J.A. Jefcoat, M. Ordaz, and C.A. Rutland. 2021. Full-scale evaluation of surface treatments for airfield concrete pavement repair. Transportation Research Record 2675, no. 9: 1585– 1597. https://doi.org/10.1177/03611981211008882 Du, Z., S. Deng, S. Zhang, and B. Wang. 2016. Selective and high sorption of perfluorooctanesulfonate and perfluorooctanoate by fluorinated alkyl chain modified montmorillonite. The Journal of Physical Chemistry C 120, no. 30: 16782– 16790. Dujardin, J., C. Anibas, J. Bronders, P. Jamin, K. Hamonts, W. Dejonghe, S. Brouyère, and O. Batelaan. 2014. Combining flux estimation techniques to improve characterization of groundwater–surface-water interaction in the Zenne River, Belgium. Hydrogeology Journal 22: 1657– 1668. https://doi.org/10.1007/s10040-014-1159-4 Essumang, D.K., A. Eshun, J.N. Hogarh, J.K. Bentum, J.K. Adjei, J. Negishi, S. Nakamichi, M. Habibullah-Al-Mamun, and S. Masunaga. 2017. Perfluoroalkyl acids (PFAAs) in the Pra and Kakum River basins and associated tap water in Ghana. Science of the Total Environment 579: 729– 735. https://doi.org/10.1016/j.scitotenv.2016.11.035 Fleckenstein, J.H., S. Krause, D.M. Hannah, and F. Boano. 2010. Groundwater-surface water interactions: New methods and models to improve understanding of processes and dynamics. Advances in Water Resources 33, no. 11: 1291– 1295. Gibson, B., and J.F. Devlin. 2018. Laboratory validation of a point velocity probe for measuring horizontal flow from any direction. Journal of Contaminant Hydrology 208: 10– 16. Glover, R.E., and G.G. Balmer. 1954. River depletion resulting from pumping a well near a river. Eos, Transactions American Geophysical Union 35, no. 3: 468– 470. González-Pinzón, R., A.S. Ward, C.E. Hatch, A.N. Wlostowski, K. Singha, M.N. Gooseff, R. Haggerty, J.W. Harvey, O.A. Cirpka, and J.T. Brock. 2015. A field comparison of multiple techniques to quantify groundwater–surface-water interactions. Freshwater Science 34, no. 1: 139– 160. Goodrow, S.M., B. Ruppel, R.L. Lippincott, G.B. Post, and N.A. Procopio. 2020. Investigation of levels of perfluoroalkyl substances in surface water, sediment and fish tissue in New Jersey, USA. Science of the Total Environment 729: 138839. https://doi.org/10.1016/J.SCITOTENV.2020.138839 Guo, B., J. Zeng, and M.L. Brusseau. 2020. A mathematical model for the release, transport, and retention of per- and polyfluoroalkyl substances (PFAS) in the vadose zone. Water Resources Research 56, no. 2: e2019WR026667. https://doi.org/10.1029/2019wr026667 Hall, F.R., and A.F. Moench. 1972. Application of the convolution equation to stream-aquifer relationships. Water Resources Research 8, no. 2: 487– 493. Hartmann, H., C. Hefner, E. Carter, D. Liles, C. Divine, and P.L. Edmiston. 2021. Passive sampler designed for per- and polyfluoroalkyl substances using polymer-modified organosilica adsorbent. AWWA Water Science 3, no. 4: e1237. https://doi.org/10.1002/aws2.1237 Hatfield, K., M. D. Annable, and P. S. Rao. 2006. Demonstration and validation of a water and solute flux measuring device. Protocol Report. Florida University Gainesville. Healy, R.W. 2010. Estimating Groundwater Recharge. Cambridge, UK: Cambridge University Press. Hester, E.T., K.Y. Santizo, A.A. Nida, and M.A. Widdowson. 2021. Hyporheic transverse mixing zones and dispersivity: Laboratory and numerical experiments of hydraulic controls. Journal of Contaminant Hydrology 243: 103885. https://doi.org/10.1016/j.jconhyd.2021.103885 Interstate Technical and Regulatory Council (ITRC). 2022. Per- and Polyfluoroalkyl substances technical and regulatory guidance. ITRC. https://pfas-1.itrcweb.org/ (accessed June 2022). Interstate Technology and Regulatory Council (ITRC). 1999. Regulatory Guidance for Permeable Reactive Barriers Designed to Remediate Inorganic and Radionuclide Contamination. https://www.enviro.wiki/images/0/0a/ITRC-1999-Permeable_Reactive_Barriers_for_Inorganics_and_Radionuclides.pdf. (accessed Dec 2022) Jamin, P., F. Cosme, P. Briers, P. Orban, K. De Greene, and S. Brouyère. 2020. Innovative contaminant mass flux monitoring in an aquifer subject to tidal effects. Groundwater Monitoring & Remediation 40, no. 2: 28– 39. Johnson, T.C., G.E. Hammond, and X. Chen. 2017. PFLOTRAN-E4D: A parallel open source PFLOTRAN module for simulating time-lapse electrical resistivity data. Computers & Geosciences 99: 72– 80. Johnson, T.C., R.J. Versteeg, A. Ward, F.D. Day-Lewis, and A. Revil. 2010. Improved hydrogeophysical characterization and monitoring through parallel modeling and inversion of time-domain resistivity and induced-polarization data. Geophysics 75, no. 4: WA27– WA41. Junttila, V., E. Vaha, N. Perkola, A. Raike, K. Siimes, J. Mehtonen, H. Kankaanpaa, and J. Mannio. 2019. PFASs in Finnish rivers and fish and the loading of PFASs to the Baltic Sea. Water 11, no. 4: 870. https://doi.org/10.3390/w11040870 Kalbus, E., F. Reinstorf, and M. Schirmer. 2006. Measuring methods for groundwater–surface water interactions: A review. Hydrology and Earth System Sciences 10: 873– 887. Keery, J., A. Binley, N. Crook, and J.W.N. Smith. 2007. Temporal and spatial variability of groundwater–surface water fluxes: Development and application of an analytical method using temperature time series. Journal of Hydrology 336, no. 1–2: 1– 16. Kempf, A., C.E. Divine, G. Leone, S. Holland, and J. Mikac. 2013. Field performance of point velocity probes at a tidally influenced site. Remediation Journal 23, no. 1: 37– 61. Kim, Y., K.A. Pike, R. Gray, J.W. Sprankle, J.A. Faust, and P.L. Edmiston. 2022. Non-targeted identification and semi-quantitation of emerging per- and polyfluoroalkyl substances (PFAS) in US rainwater. Environmental Science: Processes & Impacts (In press). https://doi.org/10.1039/d2em00349j Kim, S., and K. Kannan. 2007. Perfluorinated acids in air, rain, snow, surface runoff, and lakes: Relative importance of pathways to contamination of urban lakes. Environmental Science & Technology 41: 8328– 8334. Kimball, B.A. 1997. Use of tracer injections and synoptic sampling to measure metal loading from acid mine drainage. U.S. Geological Survey Fact Sheet FS-245 96, 4 Kuffour, B.N.O., N.B. Engdahl, C.S. Woodward, L.E. Condon, S. Kollet, and R.M. Maxwell. 2020. Simulating coupled surface–subsurface flows with ParFlow v3. 5.0: Capabilities, applications, and ongoing development of an open-source, massively parallel, integrated hydrologic model. Geoscientific Model Development 13, no. 3: 1373– 1397. Kurwadkar, S., J. Dane, S.R. Kanel, M.N. Nadagouda, R.W. Cawdrey, B. Ambade, G.C. Struckhoff, and R. Wilkin. 2022. Per- and polyfluoroalkyl substances in water and wastewater: A critical review of their global occurrence and distribution. Science of the Total Environment 809: 151003. https://doi.org/10.1016/j.scitotenv.2021.151003 Labaky, W., J.F. Devlin, and R.W. Gillham. 2007. A probe for measuring groundwater velocity at the centimetre scale. Environmental Science and Technology 41, no. 24: 8453– 8458. Lam, N.H., C.R. Cho, K. Kannan, and H.S. Cho. 2017. A nationwide survey of perfluorinated alkyl substances in waters, sediment and biota collected from aquatic environment in Vietnam: Distributions and bioconcentration profiles. Journal of Hazardous Materials 323(Pt A): 116– 127. https://doi.org/10.1016/j.jhazmat.2016.04.010 Lane, J.W., Jr. 2007. Using fiber-optic distributed temperature sensors to monitor groundwater and surface-water processes and interaction [abs.]. In: NGWA Ground Water Summit, Albuquerque, New Mexico, April 29–May 30, 2007. Westerville, Ohio, National Ground Water Association. Layton, L., H. Klammler, K. Hatfield, J. Cho, M.A. Newman, and M.D. Annable. 2017. Development of a passive sensor for measuring vertical cumulative water and solute mass fluxes in lake sediments and streambeds. Advances in Water Resources 105: 1– 12. Lee, Y.M., J.Y. Lee, M.K. Kim, H. Yang, J.E. Lee, Y. Son, Y. Kho, K. Choi, and D. Zoh. 2020. Concentration and distribution of per- and polyfluoroalkyl substances (PFAS) in the Asan Lake area of South Korea. Journal of Hazardous Materials 381: 120909. https://doi.org/10.1016/j.jhazmat.2019.120909 Lemaire, G.G., U.S. McKnight, H. Schulz, S. Roost, and P.L. Bjerg. 2020. Evidence of spatio-temporal variations in contaminants discharging to a peri-urban stream. Groundwater Monitoring & Remediation 40, no. 2: 40– 51. https://doi.org/10.1111/gwmr.12371 Lewandowski, J., K. Meinikmann, and S. Krause. 2020. Groundwater–surface water interactions: Recent advances and interdisciplinary challenges. Water 12, no. 1: 296. Li, F., J. Duan, S. Tian, H. Ji, Y. Zhu, Z. Wei, and D. Zhao. 2020. Short-chain per- and polyfluoroalkyl substances in aquatic systems: Occurrence, impacts and treatment. Chemical Engineering Journal 380: 122506. https://doi.org/10.1016/j.cej.2019.122506 Liao, S., M. Arshadi, M.J. Woodcock, Z.S.S.L. Saleeba, D. Pinchbeck, C. Liu, N.L. Cápiro, L.M. Abriola, and K.D. Pennell. 2022. Influence of residual nonaqueous-phase liquids (NAPLs) on the transport and retention of perfluoroalkyl substances. Environmental Science & Technology 56, no. 12: 7976– 7985. https://doi.org/10.1021/acs.est.2c00858 Liou, J.S., B. Szostek, C.M. DeRito, and E.L. Madsen. 2010. Investigating the biodegradability of perfluorooctanoic acid. Chemosphere 80, no. 2: 176– 183. https://doi.org/10.1016/j.chemosphere.2010.03.009 Liu, Y., M. Qian, X. Ma, L. Zhu, and J.W. Martin. 2018. Nontarget mass spectrometry reveals new perfluoroalkyl substances in fish from the Yangtze River and Tangxun Lake, China. Environmental Science & Technology 52, no. 10: 5830– 5840. https://doi.org/10.1021/acs.est.8b00779 Lorenzo, M., J. Campo, M. Farre, F. Perez, Y. Pico, and D. Barcelo. 2016. Perfluoroalkyl substances in the Ebro and Guadalquivir river basins (Spain). Science of the Total Environment 540: 191– 199. https://doi.org/10.1016/j.scitotenv.2015.07.045 Lyu, X., F. Xiao, C. Shen, J. Chen, C.M. Park, Y. Sun, M. Flury, and D. Wang. 2022. Per- and polyfluoroalkyl substances (PFAS) in subsurface environments: Occurrence, fate, transport, and research prospect. Reviews of Geophysics 60, no. 3: e2021RG000765. https://doi.org/10.1029/2021rg000765 Masoner, J.R., D.W. Kolpin, I.M. Cozzarelli, L.B. Barber, D.S. Burden, W.T. Foreman, K.J. Forshay, E.T. Furlong, J.F. Groves, M.L. Hladik, M.E. Hopton, J.B. Jaeschke, S.H. Keefe, D.P. Krabbenhoft, R. Lowrance, K.M. Romanok, D.L. Rus, W.R. Selbig, B.H. Williams, and P.M. Bradley. 2019. Urban stormwater: An overlooked pathway of extensive mixed contaminants to surface and groundwaters in the United States. Environmental Science & Technology 53, no. 17: 10070– 10081. https://doi.org/10.1021/acs.est.9b02867 McCallum, A.M., M.S. Andersen, G.C. Rau, J.R. Larsen, and R.I. Acworth. 2014. River-aquifer interactions in a semiarid environment investigated using point and reach measurements. Water Resources Research 50, no. 4: 2815– 2829. https://doi.org/10.1002/2012WR012922 McDonough, J.T., R.H. Anderson, J.T. Lang, D. Liles, K. Matteson, and T. Olechiw. 2022. Field-scale demonstration of PFAS leachability following in situ soil stabilization. ACS Omega 7: 419– 429. https://doi.org/10.1021/acsomega.1c04789 McGregor, R. 2018. In situ treatment of PFAS-impacted groundwater using colloidal activated carbon. Remediation Journal 28, no. 3: 33– 41. https://doi.org/10.1002/rem.21558 Merino, N., Y. Qu, R.A. Deeb, E.L. Hawley, M.R. Hoffmann, and S. Mahendra. 2016. Degradation and removal methods for perfluoroalkyl and polyfluoroalkyl substances in water. Environmental Engineering Science 33, no. 9: 615– 649. Muffels, C., S. Panday, C. Andrews, M. Tonkin, and A. Spiliotopoulos. 2022. Simulating groundwater interaction with a surface water network using connected linear networks. Groundwater 60, no. 6: 801– 807. Murakami, M., H. Shinohara, and H. Takada. 2009. Evaluation of wastewater and street runoff as sources of perfluorinated surfactants (PFSs). Chemosphere 74, no. 4: 487– 493. https://doi.org/10.1016/j.chemosphere.2008.10.018 NAVFAC. 2016. Sediment Reactive Capping Factsheet. https://exwc.navfac.navy.mil/Portals/88/Documents/EXWC/Restoration/er_pdfs/r/navfac-sed-reactive-capping.pdf?ver=C7IZAkltVgAANoZ75cQh7g%3d%3d×tamp=1651710176879 (Accessed December 24, 2022). NAVFAC. 2003. Implementation Guide for Assessing and Managing Contaminated Sediment at Navy Facilities. NFESC User's Guide UG-2053-ENV. Nguyen, T.M.H., J. Bräunig, K. Thompson, J. Thompson, S. Kabiri, D.A. Navarro, R.S. Kookana, C. Grimison, C.M. Barnes, C.P. Higgins, M.J. McLaughlin, and J.F. Mueller. 2020. Influences of chemical properties, soil properties, and solution pH on soil-water partitioning coefficients of per- and polyfluoroalkyl substances (PFASs). Environmental Science & Technology 54, no. 24: 15883– 15892. Olsen, G.W., D.C. Mair, C.C. Lange, L.M. Harrington, T.R. Church, C.L. Goldberg, R.M. Herron, H. Hanna, J.B. Nobiletti, J.A. Rios, W.K. Reagen, and C.A. Ley. 2017. Per- and polyfluoroalkyl substances (PFAS) in American Red Cross adult blood donors, 2000-2015. Environmental Research 157: 87– 95. https://doi.org/10.1016/j.envres.2017.05.013 Ottosen, C.B., V. Rønde, U.S. McKnight, M.D. Annable, M.M. Broholm, J.F. Devlin, and P.L. Bjerg. 2020. Natural attenuation of a chlorinated ethene plume discharging to a stream: Integrated assessment of hydrogeological, chemical and microbial interactions. Water Research 186: 116332. https://doi.org/10.1016/j.watres.2020.116332 Panday, S. 2023. Block-Centered Transport (BCT) Process for MODFLOW-USG. GSI Environmental. Petre, M.A., D.P. Genereux, L. Koropeckyj-Cox, D.R.U. Knappe, S. Duboscq, T.E. Gilmore, and Z.R. Hopkins. 2021. Per- and polyfluoroalkyl substance (PFAS) transport from groundwater to streams near a PFAS manufacturing facility in North Carolina, USA. Environmental Science & Technology 55, no. 9: 5848– 5856. https://doi.org/10.1021/acs.est.0c07978 Pike, K.A., P.L. Edmiston, J.J. Morrison, and J.A. Faust. 2021. Correlation analysis of perfluoroalkyl substances in regional U.S. precipitation events. Water Research 190: 116685. Podder, A., A. Sadmani, D. Reinhart, N.B. Chang, and R. Goel. 2021. Per and poly-fluoroalkyl substances (PFAS) as a contaminant of emerging concern in surface water: A transboundary review of their occurrences and toxicity effects. Journal of Hazardous Materials 419: 126361. https://doi.org/10.1016/j.jhazmat.2021.126361 Pramanik, B.K., R. Roychand, S. Monira, M. Bhuiyan, and V. Jegatheesan. 2020. Fate of road-dust associated microplastics and per- and polyfluorinated substances in stormwater. Process Safety and Environmental Protection 144: 236– 241. https://doi.org/10.1016/j.psep.2020.07.020 Rønde, V., U.S. McKnight, A.T. Sonne, J.F. Devlin, and P.L. Bjerg. 2017. Contaminant mass discharge to streams: Comparing direct groundwater velocity measurements and multi-level groundwater sampling with an in-stream approach. Journal of Contaminant Hydrology 206: 43– 54. Rosenberry, D.O., P. Engesgaard, and C. Hatch. 2021. Hydraulic conductivity can no longer be considered a fixed property when quantifying flow between groundwater and surface water. Hydrological Processes 35: e14226. https://doi.org/10.1002/hyp.14226 Rosenberry, D.O. 2008. A seepage meter designed for use in flowing water. Journal of Hydrology 359, no. 1–2: 118– 130. Rosenberry, D.O., and J.W. LaBaugh. 2008. Field techniques for estimating water fluxes between surface water and ground water (No. 4-D2). Geological Survey (US). Ross, I., J. McDonough, J. Miles, P. Storch, P.K. Kochunarayan, E. Kalve, J. Hurst, S. Dasgupta, and J. Burdick. 2018. A review of emerging technologies for remediation of PFAS. Remediation Journal 28, no. 2: 101– 126. Salvatore, D., K. Mok, K.K. Garrett, G. Poudrier, P. Brown, L. Birnbaum, G. Goldenman, M.F. Miller, S. Patton, M. Poehlein, J. Varshavsky, and A. Cordner. 2022. Presumptive contamination: A new approach to PFAS contamination based on likely sources. Environmental Science & Technology Letters 9, no. 11: 983– 990. https://doi.org/10.1021/acs.estlett.2c00502 Schaefer, C.E., D. Nguyen, E. Christie, S. Shea, C.P. Higgins, and J.A. Field. 2021. Desorption of poly-and perfluoroalkyl substances from soil historically impacted with aqueous film- forming foam. Journal of Environmental Engineering 147, no. 2: 06020006. Schaefer, C.E., V. Culina, D. Nguyen, and J. Field. 2019. Uptake of poly- and perfluoroalkyl substance at the air-water interface. Environmental Science & Technology 53: 12442– 12448. Scott, J.W., K.G. Gunderson, L.A. Green, R.R. Rediske, and A.D. Steinman. 2021. Perfluoroalkylated substances (PFAS) associated with microplastics in a Lake environment. Toxics 2021, no. 9: 106. https://doi.org/10.3390/toxics9050106 Silva, J.A.K., J. Simunek, and J.E. McCray. 2021. A modified HYDRUS model for simulating PFAS transport in the vadose zone. Water 12: 2758. https://doi.org/10.3390/w12102758 Slater, L.D., D. Ntarglagiannis, F.D. Day-Lewis, K. Mwakyanamale, R.J. Versteeg, A. Ward, C. Strickland, C.D. Johnson, and J.W. Lane Jr.. 2010. Use of electrical imaging and distributed temperature sensing methods to characterize surface water–groundwater exchange regulating uranium transport at the Hanford 300 Area, Washington. Water Resources Research 46: W10533. https://doi.org/10.1029/2010WR009110 So, M.K., Y. Miyake, W.Y. Yeung, Y.M. Ho, S. Taniyasu, P. Rostkowski, N. Yamashita, B.S. Zhou, X.J. Shi, J.X. Wang, J.P. Giesy, H. Yu, and P.K. Lam. 2007. Perfluorinated compounds in the Pearl River and Yangtze River of China. Chemosphere 68, no. 11: 2085– 2095. https://doi.org/10.1016/j.chemosphere.2007.02.008 Sörengård, M., D.B. Kleja, and L. Ahrens. 2019. Stabilization and solidification remediation of soil contaminated with poly- and perfluoroalkyl substances (PFASs). Journal of Hazardous Materials 367: 639– 646. Sulis, M., S.B. Meyerhoff, C. Paniconi, R.M. Maxwell, M. Putti, and S.J. Kollet. 2010. A comparison of two physics-based numerical models for simulating surface water–groundwater interactions. Advances in Water Resources 33, no. 4: 456– 467. Sun, M., E. Arevalo, M. Strynar, A. Lindstrom, M. Richardson, B. Kearns, A. Pickett, C. Smith, and D.R.U. Knappe. 2016. Legacy and emerging perfluoroalkyl substances are important drinking water contaminants in the Cape Fear River watershed of North Carolina. Environmental Science & Technology Letters 3, no. 12: 415– 419. https://doi.org/10.1021/acs.estlett.6b00398 Thai, P.K., J. McDonough, T.A. Key, J. Thompson, P. Prasada, S. Porman, and J.F. Mueller. 2022. Release of perfluoroalkyl substances from AFFF-impacted concrete in a firefighting training ground (FTG) under repeated rainfall simulations. Journal of Hazardous Materials Letters 3: 100050. https://doi.org/10.1016/j.hazl.2022.100050 Thomle, J., C. Strickland, T.C. Johnson, Y. Zhu, and J. Stegen. 2020. A flux detection probe to quantify dynamic groundwater-surface water exchange in the hyporheic zone. Groundwater 58, no. 6: 892– 900. Toase, D., J. Lagowski, I. Ross, P. Storch, and T. Statham. 2019. A comparison of treatment methods for PFAS impacted concrete: results from laboratory and field trails. https://inis.iaea.org/search/search.aspx?orig_q=RN:52091040 (Accessed December 24, 2022). Tripathi, G.N., A.E. Fryar, S.K. Hampson, and A. Mukherjee. 2021. Seasonal to decadal variability in focused groundwater and contaminant discharge along a channelized stream. Groundwater Monitoring & Remediation 41: 32– 45. https://doi.org/10.1111/gwmr.12422 US Environmental Protection Agency (USEPA). 2013. Use of Amendments for In Situ Remediation at Superfund Sediment Sites. OSWER 9200.2-128FS. US Environmental Protection Agency (USEPA). 2005. Contaminated Sediment Remediation Guidance for Hazardous Waste Sites. OSWER 9355.0-85. EPA-540-R-05-012. USGS. 2006. Fiber-Optic Distributed Temperature Sensing Technology Demonstration and Evaluation Project. https://www.usgs.gov/mission-areas/water-resources/science/fiber-optic-distributed-temperature-sensing-technology?qt-science_center_objects=0#qt-science_center_objects (accessed February 15, 2021). Viticoski, R.L., D. Wang, M.A. Feltman, V. Mulabagal, S.R. Rogers, D.M. Blersch, and J.S. Hayworth. 2022. Spatial distribution and mass transport of perfluoroalkyl substances (PFAS) in surface water: A statewide evaluation of PFAS occurrence and fate in Alabama. Science of the Total Environment 836: 155524. https://doi.org/10.1016/j.scitotenv.2022.155524 Wang, Y., N. Khan, D. Huang, K.C. Carroll, and M.L. Brusseau. 2021. Transport of PFOS in aquifer sediment: Transport behavior and a distributed-sorption model. Science of the Total Environment 779: 146444. Wang, Y., W. Chang, Y. Wang, Y. Zhang, M. Wang, Y. Wang, and P. Li. 2019. A review of sources, multimedia distribution and health risks of novel fluorinated alternatives. Ecotoxicology and Environmental Safety 182: 109402. https://doi.org/10.1016/j.ecoenv.2019.109402 Woessner, W.W. 2020. Groundwater-Surface Water Exchange, 158. Guelph, ON, Canada: Groundwater Project. Xiao, L., Y. Ling, A. Alsbaiee, C. Li, D.E. Helbling, and W.R. Dichtel. 2017a. β-Cyclodextrin polymer network sequesters perfluorooctanoic acid at environmentally relevant concentrations. Journal of the American Chemical Society 139, no. 23: 7689– 7692. https://doi.org/10.1021/jacs.7b02381 Xiao, X., B.A. Ulrich, B. Chen, and C.P. Higgins. 2017b. Sorption of poly- and perfluoroalkyl substances (PFASs) relevant to aqueous film-forming foam (AFFF)-impacted groundwater by biochars and activated carbon. Environmental Science & Technology 51, no. 11: 6342– 6351. https://doi.org/10.1021/acs.est.7b00970 Zhou, Z., Y. Liang, Y. Shi, L. Xu, and Y. Cai. 2013. Occurrence and transport of perfluoroalkyl acids (PFAAs), including short-chain PFAAs in Tangxun Lake, China. Environmental Science & Technology 47, no. 16: 9249– 9257. https://doi.org/10.1021/es402120y Zhu, Y., T.C. Johnson, C.E. Strickland, J.N. Thomle, J. Stegen, X. Song, and X. Chen. 2020. Joint hydrogeophysical inversion for monitoring dynamic mass flux at the groundwater-surface water interface. Manuscript submitted and in preparation for publication. Volume43, Issue1Winter 2023Pages 14-31 ReferencesRelatedInformation
Referência(s)