Artigo Acesso aberto Revisado por pares

A Novel Dielectric Modulated Gate-Stack Double-Gate Metal-Oxide-Semiconductor Field-Effect Transistor-Based Sensor for Detecting Biomolecules

2023; Multidisciplinary Digital Publishing Institute; Volume: 23; Issue: 6 Linguagem: Inglês

10.3390/s23062953

ISSN

1424-8220

Autores

Dibyendu Chowdhury, Bishnu Prasad De, Bhargav Appasani, Navaneet Kumar Singh, Rajib Kar, Durbadal Mandal, Nicu Bizon, Phatiphat Thounthong,

Tópico(s)

Semiconductor materials and devices

Resumo

In this article, the performance of n-type junctionless (JL) double-gate (DG) MOSFET-based biosensors with and without gate stack (GS) has been studied. Here, the dielectric modulation (DM) method is applied to detect biomolecules in the cavity. The sensitivity of n-type JL-DM-DG-MOSFET and n-type JL-DM-GSDG-MOSFET-based biosensors have also been evaluated. The sensitivity (ΔVth) improved in JL-DM-GSDG MOSFET/JL-DM-DG-MOSFET-based biosensors for neutral/charged biomolecules is 116.66%/66.66% and 1165.78%/978.94%, respectively, compared with the previously reported results. The electrical detection of biomolecules is validated using the ATLAS device simulator. The noise and analog/RF parameters are compared between both biosensors. A lower threshold voltage is observed in the GSDG-MOSFET-based biosensor. The Ion/Ioff ratio is higher for DG-MOSFET-based biosensors. The proposed GSDG-MOSFET-based biosensor demonstrates higher sensitivity than the DG-MOSFET-based biosensor. The GSDG-MOSFET-based biosensor is suitable for low-power, high-speed, and high sensitivity applications.

Referência(s)