Synthesis of an Energetic Nitrate Ester
2008; Wiley; Volume: 120; Issue: 43 Linguagem: Inglês
10.1002/ange.200803648
ISSN1521-3757
AutoresDavid E. Chavez, Michael A. Hiskey, Darren L. Naud, Damon A. Parrish,
Tópico(s)Combustion and Detonation Processes
ResumoAngewandte ChemieVolume 120, Issue 43 p. 8431-8433 Zuschrift Synthesis of an Energetic Nitrate Ester† David E. Chavez Dr., David E. Chavez Dr. [email protected] Los Alamos National Laboratory, High Explosives Science and Technology, MS C920, Los Alamos, NM 87545 (USA), Fax: (+1) 505-667-0500Search for more papers by this authorMichael A. Hiskey Dr., Michael A. Hiskey Dr. Los Alamos National Laboratory, High Explosives Science and Technology, MS C920, Los Alamos, NM 87545 (USA), Fax: (+1) 505-667-0500Search for more papers by this authorDarren L. Naud Dr., Darren L. Naud Dr. Los Alamos National Laboratory, High Explosives Science and Technology, MS C920, Los Alamos, NM 87545 (USA), Fax: (+1) 505-667-0500Search for more papers by this authorDamon Parrish Dr., Damon Parrish Dr. Naval Research Laboratory, 4555 Overlook Ave, Washington, DC 20375 (USA)Search for more papers by this author David E. Chavez Dr., David E. Chavez Dr. [email protected] Los Alamos National Laboratory, High Explosives Science and Technology, MS C920, Los Alamos, NM 87545 (USA), Fax: (+1) 505-667-0500Search for more papers by this authorMichael A. Hiskey Dr., Michael A. Hiskey Dr. Los Alamos National Laboratory, High Explosives Science and Technology, MS C920, Los Alamos, NM 87545 (USA), Fax: (+1) 505-667-0500Search for more papers by this authorDarren L. Naud Dr., Darren L. Naud Dr. Los Alamos National Laboratory, High Explosives Science and Technology, MS C920, Los Alamos, NM 87545 (USA), Fax: (+1) 505-667-0500Search for more papers by this authorDamon Parrish Dr., Damon Parrish Dr. Naval Research Laboratory, 4555 Overlook Ave, Washington, DC 20375 (USA)Search for more papers by this author First published: 09 October 2008 https://doi.org/10.1002/ange.200803648Citations: 42 † This work was supported at the Los Alamos National Laboratory by the Joint DOE/DoD Munitions Technology Development Program and at the Naval Research Laboratory by the office of Naval Research, Mechanics Division. Read the full textAboutPDF ToolsRequest permissionAdd to favorites ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract Ein gießfähiger Explosivstoff? Der hochenergetische Nitratester 1 wurde in einem Dreistufenprozess in guten Ausbeuten synthetisiert. Experimente und Rechnungen belegen ein ähnliches Zersetzungs- und Explosionsverhalten wie für andere, gut charakterisierte Explosivstoffe. 1 hat eine Dichte von 1.917 g cm−3 und einen Schmelzpunkt von 85–86 °C, was eine Verarbeitung durch Schmelzgussverfahren ermöglichen könnte. References 1T. L. Davis, Chemistry of Powder and Explosives, Coll. Vol., Angriff Press, Hollywood, CA, 1943, (reprinted 1991). Google Scholar 2J. P. Agrawal, R. D. Hodgson, Organic Chemistry of Explosives, Wiley, Chichester, West Sussex, 2007. Google Scholar 3T. Urbanski, Chemistry and Technology of Explosives, Vol. 2, Pergamon, Oxford, 1965. Google Scholar 4D. M. Badgujar, M. B. Talawar, S. N. Asthana, P. P. Mahulikar, J. Hazard. Mater. 2008, 151, 289. 10.1016/j.jhazmat.2007.10.039 CASPubMedWeb of Science®Google Scholar 5L. J. Ignarro, Proc. Natl. Acad. Sci. USA 2002, 99, 7816. 10.1073/pnas.132271799 CASPubMedWeb of Science®Google Scholar 6R. B. Kaplan, H. Shechter, J. Am. Chem. Soc. 1961, 83, 3535. 10.1021/ja01477a047 CASWeb of Science®Google Scholar 7L. C. Lee, V. Grakauskas, K. Baum, J. Org. Chem. 1985, 50, 1699. 10.1021/jo00210a600 Web of Science®Google Scholar 8N. Kornblum, H. K. Singh, W. J. Kelly, J. Org. Chem. 1983, 48, 332. 10.1021/jo00151a011 CASWeb of Science®Google Scholar 9H. Shechter, R. B. Kaplan, J. Am. Chem. Soc. 1953, 75, 3980. 10.1021/ja01112a031 CASGoogle Scholar 10A. Amrollah-Madjdabadi, R. Beugelmans, A. Lechevallier, Tetrahedron Lett. 1987, 28, 4525. 10.1016/S0040-4039(00)96554-7 CASWeb of Science®Google Scholar 11R. Beugelmans, A. Amrollah-Madjdabadi, T. Gharbaoui, A. Lechevallier, J. Chem. Soc. Perkin Trans. 1 1995, 6, 609. 10.1039/p19950000609 Web of Science®Google Scholar 12P. Vanelle, J. Maldonado, M. P. Crozet, K. Senouki, P. Timon-David, Eur. J. Med. Chem. 1991, 26, 709. 10.1016/0223-5234(91)90120-C CASWeb of Science®Google Scholar 13M. P. Crozet, G. Archaimbault, P. Vanelle, R. Nouguier, Tetrahedron Lett. 1985, 26, 5133. 10.1016/S0040-4039(00)98882-8 CASWeb of Science®Google Scholar 14M. Senkus, US 2543472, 1951. Google Scholar 15H. Piotrowska, M. Poplawska, Bull. Acad. Pol. Sci. Ser. Sci. Chim. 1981, 29, 335. CASWeb of Science®Google Scholar 16Crystal data for 1 : C6H8N6O16, Mr=420.18, monoclinic, P21/n, a=8.1228(6), b=23.0560(16), c=8.5072(6) Å, α=90, β=113.9530(10)°, γ=90°, V=1456.01(18) Å3, Z=4, ρcalcd=1.917 Mg m−3, μ=0.195 mm−1, F(000)=856, R1=0.0412 for 2382 observed (I>2σI) reflections and 0.0743 for all 3593 reflections, GOF=0.977, 253 parameters. The crystals were irradiated using graphite monochromated MoKα radiation (λ=0.71073). An MSC X-Stream low-temperature device was used to keep the crystals at a constant −170 °C during data collection. Data collection was performed and the unit cell was initially refined using SMART [v5.625] (Bruker (2001a). SMART v5.625. Bruker AXS Inc., Madison, Wisconsin, USA). Data Reduction was performed using SAINT [v6.36A] (Bruker (2002). SAINT v6.36A. Bruker AXS Inc., Madison, Wisconsin, USA) and XPREP [v6.12] (Bruker (2001b). XPREP v6.12. Bruker AXS Inc., Madison, Wisconsin, USA). Corrections were applied for Lorentz, polarization, and absorption effects using SADABS [v2.03] (Bruker (2000). SADABS v2.03, Bruker AXS Inc., Madison, Wisconsin, USA). The structure was solved and refined with the aid of the programs in the SHELXTL-plus [v6.10] system of programs (Bruker (2000). SHELXTL v6.10. Bruker AXS Inc., Madison, Wisconsin, USA). The full-matrix least-squares refinement on F2 included atomic coordinates and anisotropic thermal parameters for all non-hydrogen atoms. The hydrogen atoms were included using a riding model. CCDC 694822 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Google Scholar 17H. H. Cady, A. C. Larson, Acta Crystallogr. Sect. B 1975, 31, 1864. 10.1107/S0567740875006383 Web of Science®Google Scholar 18S. Bastea, L. E. Fried, K. R. Glaesemann, W. M. Howard, P. C. Souers, P. A. Vitello, Cheetah 5.0, User's Manual, Lawrence Livermore National Laboratory, 2006. Google Scholar Citing Literature Volume120, Issue43October 13, 2008Pages 8431-8433 This is the German version of Angewandte Chemie. Note for articles published since 1962: Do not cite this version alone. Take me to the International Edition version with citable page numbers, DOI, and citation export. We apologize for the inconvenience. ReferencesRelatedInformation
Referência(s)