Artigo Acesso aberto Revisado por pares

Properties of Mechanochemically Synthesized Famatinite Cu3SbS4 Nanocrystals

2023; Volume: 3; Issue: 2 Linguagem: Inglês

10.3390/micro3020030

ISSN

2673-8023

Autores

Erika Dutková, Jaroslav Kováč, Jaroslav Kováč, J. Hejtmánek, Petr Levinský, Adelia Kashimbetova, M.J. Sayagués, Martin Fabián, Zdenka Lukáčová Bujňáková, Matěj Baláž, Katarína Gáborová, Viktor Puchý, Ladislav Čelko,

Tópico(s)

Advanced Thermoelectric Materials and Devices

Resumo

In this study, we report the optoelectric and thermoelectric properties of famatinite Cu3SbS4 that was mechanochemically synthesized in a planetary mill from powder elements for 120 min in an inert atmosphere. The tetragonal famatinite Cu3SbS4 was nanocrystalline with a crystallite size of 14 nm, as endorsed by Rietveld refinement. High-resolution transmission electron microscopy showed several crystallites in the range of 20–50 nm. Raman spectroscopy proved the purity of the synthesized famatinite Cu3SbS4 and chemical-state characterization performed by X-ray photoelectron spectroscopy confirmed that the prepared sample was pure. The Cu1+, Sb5+, and S2− oxidation states in Cu3SbS4 sample were approved. The morphology characterization showed homogeneity of the prepared sample. The photoresponse of Cu3SbS4 was confirmed from I–V measurements in the dark and under illumination. The photocurrent increase reached 20% compared to the current in the dark at a voltage of 5 V. The achieved results confirm that synthesized famatinite Cu3SbS4 can be applied as a suitable absorbent material in solar cells. The performed thermoelectric measurements revealed a figure of merit ZT of 0.05 at 600 K.

Referência(s)