On the S-shaped floaters for a Wavestar-like wave energy converter with an I-shaped mechanical power take-off
2023; Elsevier BV; Volume: 19; Linguagem: Inglês
10.1016/j.ecmx.2023.100387
ISSN2590-1745
AutoresAmmar Ahmed, Ali Azam, Yanen Wang, Xing Tan, Minyi Yi, Zutao Zhang,
Tópico(s)Earthquake and Tsunami Effects
ResumoA numerical wave energy converter (WEC) similar to the Wavestar WEC with eight units, each comprising an I-shaped power take-off (PTO), was studied with the cylindrical-hemispherical (C-HS) and S-shaped floaters. Efforts were made to examine the effects of the floater-geometry change on the PTO power performance and to study the significance of replacing a C-HS with an S-shaped floater of the same size and resonance characteristics using a hybrid algorithm based on ANSYS AQWA and MATLAB Simscape. The pure floater-shape-change effects on their heave responses were evaluated through the time-domain simulations in ANSYS AQWA and imported into a MATLAB-Simscape-based algorithm of the PTO to investigate the performance of the PTO and the overall WEC model under those effects. The buoys on the model scale were tested in a lab-scale facility, followed by a CFD analysis to study how the surrounding fluid interacts with the C-HS and the S-shaped floaters. The spectral modeling showed that the S-shaped floater could achieve a 5.5% greater RMS heave response than the C-HS in irregular waves. Replacing a C-HS with an S-shaped floater, the maximum increase in the PTO force was recorded to be 14%. A PTO integrated into an S-shaped floater attained 26% greater input power than one integrated into a C-HS floater. At an energy conversion efficiency of 55%, the PTO output power with an S-shaped floater tends to be 25–26% greater than with a C-HS floater. Replacing a C-HS with an S-shaped floater in the Wavestar-like WEC could be an optimal choice.
Referência(s)