Interleukin-11 disrupts alveolar epithelial progenitor function
2023; European Respiratory Society; Volume: 9; Issue: 3 Linguagem: Inglês
10.1183/23120541.00679-2022
ISSN2312-0541
AutoresRosa K. Kortekaas, Kerstin E. Geillinger‐Kästle, Theo Borghuis, Kaoutar Belharch, Megan Webster, Wim Timens, Janette K. Burgess, Reinoud Gosens,
Tópico(s)Pleural and Pulmonary Diseases
ResumoBackground Interleukin-11 (IL-11) is linked to the pathogenesis of idiopathic pulmonary fibrosis (IPF), since IL-11 induces myofibroblast differentiation and stimulates their excessive collagen deposition in the lung. In IPF there is disrupted alveolar structural architecture, yet the effect of IL-11 on the dysregulated alveolar repair remains to be elucidated. Methods We hypothesised that epithelial-fibroblast communication associated with lung repair is disrupted by IL-11. Thus, we studied whether IL-11 affects the repair responses of alveolar lung epithelium using mouse lung organoids and precision-cut lung slices (PCLS). Additionally, we assessed the anatomical distribution of IL-11 and IL-11 receptor (IL-11R) in human control and IPF lungs using immunohistochemistry. Results IL-11 protein was observed in airway epithelium, macrophages and in IPF lungs, also in areas of alveolar type 2 (AT2) cell hyperplasia. IL-11R staining was predominantly present in smooth muscle and macrophages. In mouse organoid co-cultures of epithelial cells with lung fibroblasts, IL-11 decreased organoid number and reduced the fraction of Prosurfactant Protein C-expressing organoids, indicating dysfunctional regeneration initiated by epithelial progenitors. In mouse PCLS exposed to IL-11, ciliated cell markers were increased. The response of primary human fibroblasts to IL-11 on gene expression level was minimal, though bulk RNA-sequencing revealed IL-11 modulated various processes which are associated with IPF, including unfolded protein response, glycolysis and Notch signalling. Conclusions IL-11 disrupts alveolar epithelial regeneration by inhibiting progenitor activation and suppressing the formation of mature alveolar epithelial cells. Evidence for a contribution of dysregulated fibroblast–epithelial communication to this process is limited.
Referência(s)