Revisão Acesso aberto Revisado por pares

Bimetallic Molecular Catalyst Design for Carbon Dioxide Reduction

2023; Wiley; Volume: 88; Issue: 8 Linguagem: Inglês

10.1002/cplu.202300222

ISSN

2192-6506

Autores

Philipp Gotico, Zakaria Halime, Winfried Leibl, Ally Aukauloo,

Tópico(s)

Cyclopropane Reaction Mechanisms

Resumo

The core challenge in developing cost-efficient catalysts for carbon dioxide (CO2 ) conversion mainly lies in controlling its complex reaction pathways. One such strategy exploits bimetallic cooperativity, which relies on the synergistic interaction between two metal centers to activate and convert the CO2 substrate. While this approach has seen an important trend in heterogeneous catalysis as a handle to control stabilities of surface intermediates, it has not often been utilized in molecular and heterogenized molecular catalytic systems. In this review, we gather general principles on how natural CO2 activating enzymes take advantage of bimetallic strategy and how phosphines, cyclams, polypyridyls, porphyrins, and cryptates-based homo- and hetero-bimetallic molecular catalysts can help understand the synergistic effect of two metal centers.

Referência(s)