Representation of Observations in Reinforcement Learning for Playing Arcade Fighting Game
2023; Springer International Publishing; Linguagem: Inglês
10.1007/978-3-031-37649-8_5
ISSN2367-3370
Autores Tópico(s)Digital Games and Media
ResumoAbstract Reinforcement learning (RL) is one of three basic machine learning paradigms, alongside supervised learning and unsupervised learning. Reinforcement learning algorithms have become very popular in simple computer games and games like chess and GO. However, playing classical arcade fighting games would be challenging because of the complexity of the command system (the character makes moves according to the sequence of input) and combo system. In this paper, a creation of a game environment of The King of Fighters ’97 (KOF ’97), which implements the open gym env interface, is described. Based on the characteristics of the game, an innovative approach to represent the observations from the last few steps has been proposed, which guarantees the preservation of Markov’s property. The observations are coded using the “one-hot encoding” technique to form a binary vector, while the sequence of stacked vectors from successive steps creates a binary image. This image encodes the character’s input and behavioural pattern, which are then retrieved and recognized by the CNN network. A network structure based on the Advantage Actor-Critic network was proposed. In the experimental verification, the RL agent performing basic combos and complex moves (including the so-called “desperation moves”) was able to defeat characters using the highest level of AI built into the game.
Referência(s)