Technical, economic and environmental analysis of solar thermochemical production of drop-in fuels
2023; Elsevier BV; Volume: 901; Linguagem: Inglês
10.1016/j.scitotenv.2023.166005
ISSN1879-1026
AutoresChristian Moretti, Vikas Patil, Christoph Falter, Lukas Geissbühler, Anthony Patt, Aldo Steinfeld,
Tópico(s)Thermodynamic and Exergetic Analyses of Power and Cooling Systems
ResumoThis study analyzes the technical performance, costs and life-cycle greenhouse gas (GHG) emissions of the production of various fuels using air-captured water and CO2, and concentrated solar energy as the source of high-temperature process heat. The solar thermochemical fuel production pathway utilizes a ceria-based redox cycle for splitting water and CO2 to syngas - a tailored mixture of H2 and CO - which in turn is further converted to liquid hydrocarbon fuels. The cycle is driven by concentrated solar heat and supplemented by a high-temperature thermal energy storage for round-the-clock continuous operation. The study examines three locations with high direct normal irradiation using a baseline heliostat field reflective area of 1 km2 for the production of six fuels, i.e. jet fuel and diesel via Fischer-Tropsch, methanol, gasoline via methanol, dimethyl ether, and hydrogen. Two scenarios are considered: near-term future by the year 2030 and long-term future beyond 2030. In the near-term future in Sierra Gorda (Chile), the minimum fuel selling price is estimated at around 76 €/GJ (2.5 €/L) for jet fuel and diesel, 65 €/GJ for methanol, gasoline (via methanol) and dimethyl ether (DME), and 42 €/GJ for hydrogen (excluding liquefaction). In the long-term future, with advancements in solar receiver, redox reactor, high-temperature heat recovery and direct air capture technologies, the industrial-scale plant could achieve a solar-to-fuel efficiency up to 13-19 %, depending on the target fuel, resulting in a minimum fuel selling price of 16-38 €/GJ (0.6-1.3 €/L) for jet fuel and diesel, and 14-32 €/GJ for methanol, gasoline, and DME, making these fuels synthesized from sunlight and air cost-competitive vis-à-vis e-fuels. To produce the same fuels in Tabernas (Spain) and Ouarzazate (Morocco) as in Sierra Gorda, the production cost would increase by 22-33 %. Greenhouse gas savings can be over 80 % already in the near-term future.
Referência(s)