Artigo Revisado por pares

Use of Topical Oxygen Therapy in Wound Healing

2023; Mark Allen Group; Volume: 32; Issue: Sup8b Linguagem: Inglês

10.12968/jowc.2023.32.sup8b.s1

ISSN

2052-2916

Autores

Robert G. Frykberg, Charles A. Andersen, Paul Chadwick, Paul B. Haser, Sandra Janßen, Aliza Lee, J. A. Niezgoda, Thomas E. Serena, Duncan Stang, Animesh Agarwal, Windy Cole, Joachim Dissemond, John P. Kirby, John C Lantis, Lawrence A. Lavery, Jose Lazaro Martinez, Thomas Wild,

Tópico(s)

Laser Applications in Dentistry and Medicine

Resumo

Journal of Wound CareVol. 32, No. Sup8b International Consensus DocumentUse of Topical Oxygen Therapy in Wound HealingRobert Frykberg, Charles Andersen, Paul Chadwick, Paul Haser, Sandra Janssen, Aliza Lee, Jeff Niezgoda, Thomas Serena, Duncan Stang, Animesh Agarwal, Windy Cole, Joachim Dissemond, John Kirby, John Lantis, Lawrence Lavery, Jose Lazaro Martinez, Thomas WildRobert FrykbergAdjunct Professor, Midwestern University, Glendale, Arizona, USSearch for more papers by this author, Charles AndersenChief of the Vascular/Endovascular Surgery Service and Medical Director of the Wound Care Clinic, Madigan Army Medical Center, USSearch for more papers by this author, Paul ChadwickVisiting Professor Birmingham City University, Honorary Consultant Podiatrist Manchester and Director Curativo WoundCare ConsultancySearch for more papers by this author, Paul HaserChief of Vascular Surgery, ONE Brooklyn Health System, New York, USSearch for more papers by this author, Sandra JanssenNurse Specialist, Wound Care, Elkerliek Hospital Helmond/Deurne, NetherlandsSearch for more papers by this author, Aliza LeeClinical Research Investigator and Director of Podiatric Medical Education, VA Hospital in Salem, Virginia, USSearch for more papers by this author, Jeff NiezgodaCMO Kent Imaging, President/CMO WebCME.net, American Professional Wound Care Association, RxOS Medical and Auxillium Heath, USSearch for more papers by this author, Thomas SerenaFounder and Medical Director, Serena Group, USSearch for more papers by this author, Duncan Stang(Glasg), Podiatrist, Lanarkshire NHS Scotland; Diabetes Foot Coordinator for Scotland and Executive Committee Member, Foot in Diabetes UK, UKSearch for more papers by this author, Animesh AgarwalProfessor, Division of Orthopaedic Traumatology, University of Texas Health Science Center, San Antonio, Texas, USSearch for more papers by this author, Windy ColeDirector of Wound Care Research, Kent State University College of Podiatric Medicine; Global Medical Affairs Director, NATROX Wound Care, UKSearch for more papers by this author, Joachim DissemondDepartment of Dermatology, Venerology and Allergology, University of Essen, GermanySearch for more papers by this author, John KirbyAcute and Critical Care Surgeon, Washington University in St Louis, Missouri, USSearch for more papers by this author, John LantisChief and Professor of Surgery, Mount Sinai West Hospital and the Icahn School of Medicine, New York, USSearch for more papers by this author, Lawrence LaveryProfessor, Department of Plastic Surgery, University of Texas Southwestern Medical Center; Medical Director, Diabetic Limb Salvage Program, Parkland Memorial Hospital, Texas, USSearch for more papers by this author, Jose Lazaro MartinezProfessor of Podiatric Surgery, Podiatry College; Clinical Director and Head of Diabetic Foot Unit, Podiatric Clinic, Complutense University of Madrid, SpainSearch for more papers by this author, Thomas WildClinic of Plastic, Hand and Aesthetic Surgery, Burn Center, BG Clinic Bergmannstrost, Halle (Saale, Germany); Medical University Halle, Outpatient and Operating Center, Martin-Luther University, Halle (Saale), Germany; University of Applied Science Anhalt, Institute of Applied Bioscience and Process Management, Head of Academic Wound Consultant Education Course, Koethen, GermanySearch for more papers by this authorRobert Frykberg; Charles Andersen; Paul Chadwick; Paul Haser; Sandra Janssen; Aliza Lee; Jeff Niezgoda; Thomas Serena; Duncan Stang; Animesh Agarwal; Windy Cole; Joachim Dissemond; John Kirby; John Lantis; Lawrence Lavery; Jose Lazaro Martinez; Thomas WildPublished Online:22 Aug 2023https://doi.org/10.12968/jowc.2023.32.Sup8b.S1AboutSectionsView articleView Full TextPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareShare onFacebookTwitterLinked InEmail View article References 1. Frykberg RG, Banks J. Challenges in the treatment of chronic wounds. Adv Wound Care. 2015;4(9):560–582. https://doi.org/10.1089/wound.2015.0635 Google Scholar2. Nussbaum SR, Carter MJ, Fife CE. An economic evaluation of the impact, cost, and medicare policy implications of chronic nonhealing wounds. Value in Health. 2018;21(1):27–32. https://doi.org/10.1016/j.jval.2017.07.007 Google Scholar3. Guest JF, Fuller GW, Vowden P. Cohort study evaluating the burden of wounds to the UK's National Health Service in 2017/2018: update from 2012/2013. BMJ Open. 2020;10(12). https://doi.org/10.1136/bmjopen-2020-045253 Google Scholar4. Olsson M, Järbrink K, Divakar U. The humanistic and economic burden of chronic wounds: a systematic review. Wound Rep Regen. 2019;27(1):114–125. https://doi.org/10.1111/wrr.12683 Google Scholar5. Sen CK, Gordillo GM, Roy S. Human skin wounds: a major and snowballing threat to public health and the economy: perspective article. Wound Rep Regen. 2009;17(6):763–771. https://doi.org/10.1111/j.1524-475X.2009.00543.x Google Scholar6. Gottrup F. Oxygen therapies for wound healing: EWMA findings and recommendations. Wounds International. 2017;8(4):18–22 Google Scholar7. ElSayed NA, Aleppo G, Aroda VR. Introduction and methodology: standards of care in diabetes. Diabetes Care. 2023;46(S1):S1–S4. https://doi.org/10.2337/DC23-SINT Google Scholar8. Gottrup F. Oxygen in wound healing and infection. World J Surg. 2004;28(3):312–315. https://doi.org/10.1007/s00268-003-7398-5 Google Scholar9. Hunt TK, Hopf HW. Wound healing and wound infection: what surgeons and anesthesiologists can do. Surg Clin North Am. 1997;77(3):587–606. https://doi.org/10.1016/S0039-6109(05)70570-3 Google Scholar10. Frykberg RG. Topical wound oxygen therapy in the treatment of chronic diabetic foot ulcers. Medicina (Lithuania). 2021;57(9). https://doi.org/10.3390/medicina57090917 Google Scholar11. Gupta S, Mujawdiya P, Maheshwari G, Sagar S. Dynamic role of oxygen in wound healing: a microbial, immunological, and biochemical perspective. Arch Razi Inst. 2022;77(2):513–523. https://doi.org/10.22092/ARI.2022.357230.2003 Google Scholar12. Frykberg RG, Franks PJ, Edmonds M. A multinational, multicenter, randomized, double-blinded, placebo-controlled trial to evaluate the efficacy of cyclical topical wound oxygen (TWO2) therapy in the treatment of chronic diabetic foot ulcers: the TwO2 study. Diabetes Care. 2020;43(3):616–624. https://doi.org/10.2337/dc19-0476 Google Scholar13. Fries RB, Wallace WA, Roy S. Dermal excisional wound healing in pigs following treatment with topically applied pure oxygen. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis. 2005;579(1–2):172–181. https://doi.org/10.1016/j.mrfmmm.2005.02.023 Google Scholar14. Sen CK. Wound healing essentials: let there be oxygen. Wound Rep Regen. 2009;17(1):1–18. https://doi.org/10.1111/j.1524-475X.2008.00436.x Google Scholar15. Troitzsch D, Vogt S, Abdul-Khaliq H, Moosdorf R. Muscle tissue oxygen tension and oxidative metabolism during ischemia and reperfusion. J Surg Res. 2005;128(1):9–14. https://doi.org/10.1016/j.jss.2004.09.014 Google Scholar16. Alhede M, Bjarnsholt T, Jensen P. Pseudomonas aeruginosa recognizes and responds aggressively to the presence of polymorpho-nuclear leukocytes. Microbiology (N Y). 2009;155(11):3500–3508. https://doi.org/10.1099/mic.0.031443-0 Google Scholar17. Fazli M, Bjarnsholt T, Kirketerp-Møller K et al.. Quantitative analysis of the cellular inflammatory response against biofilm bacteria in chronic wounds. Wound Rep Regen. 2011;19(3):387–391. https://doi.org/10.1111/j.1524-475X.2011.00681.x Google Scholar18. Ciofu O, Moser C, Jensen PØ, Høiby N. Tolerance and resistance of microbial biofilms. Nat Rev Microbiol. 2022;20(10):621–635. https://doi.org/10.1038/s41579-022-00682-4 Google Scholar19. Trøstrup H, Thomsen K, Christophersen LJ. Pseudomonas aeruginosa biofilm aggravates skin inflammatory response in BALB/c mice in a novel chronic wound model. Wound Rep Regen. 2013;21(2):292–299. https://doi.org/10.1111/wrr.12016 Google Scholar20. Rani SA, Pitts B, Beyenal H. Spatial patterns of DNA replication, protein synthesis, and oxygen concentration within bacterial biofilms reveal diverse physiological states. J Bacteriol. 2007;189(11):4223–4233. https://doi.org/10.1128/JB.00107-07 Google Scholar21. Sønderholm M, Bjarnsholt T, Alhede M. The consequences of being in an infectious biofilm: microenvironmental conditions governing antibiotic tolerance. Int J Mol Sci. 2017;18(12). https://doi.org/10.3390/ijms18122688 Google Scholar22. James GA, Ge Zhao A, Usui M. Microsensor and transcriptomic signatures of oxygen depletion in biofilms associated with chronic wounds. Wound Rep Regen. 2016;24(2):373–383. https://doi.org/10.1111/wrr.12401 Google Scholar23. Gordillo GM, Sen CK. Revisiting the essential role of oxygen in wound healing. Am J Surg. 2003;186(3):259–263. https://doi.org/10.1016/S0002-9610(03)00211-3 Google Scholar24. Oropallo AR, Serena TE, Armstrong DG, Niederauer MQ. Molecular biomarkers of oxygen therapy in patients with diabetic foot ulcers. Biomolecules. 2021;11(7). https://doi.org/10.3390/BIOM11070925 Google Scholar25. Singer AJ, Clark RAF. Cutaneous wound healing. Epstein FH, ed. N Eng J Med. 1999;341(10):738–746. https://doi.org/10.1056/NEJM199909023411006 Google Scholar26. Oates A, Bowling FL, Boulton AJM, Bowler PG, Metcalf DG, McBain AJ. The visualization of biofilms in chronic diabetic foot wounds using routine diagnostic microscopy methods. J Diabetes Res. 2014;2014. https://doi.org/10.1155/2014/153586 Google Scholar27. Dowd SE, Sun Y, Secor PR. Survey of bacterial diversity in chronic wounds using Pyrosequencing, DGGE, and full ribosome shotgun sequencing. BMC Microbiol. 2008;8. https://doi.org/10.1186/1471-2180-8-43 Google Scholar28. Trengove NJ, Langton SR, Stacey MC. Biochemical analysis of wound fluid from nonhealing and healing chronic leg ulcers. Wound Repair Regen. 1996;4(2):234–239. https://doi.org/10.1046/j.1524-475X.1996.40211.x Google Scholar29. Arnež ZM, Ramella V, Papa G. Is the LICOX® PtO2 system reliable for monitoring of free flaps? Comparison between two cohorts of patients. Microsurgery. 2019;39(5):423–427. https://doi.org/10.1002/micr.30396 Google Scholar30. Bianchi J, Douglas WS, Dawe RS. Pulse oximetry: a new tool to assess patients with leg ulcers. J Wound Care. 2000;9(3):109–112. https://doi.org/10.12968/jowc.2000.9.3.26267 Google Scholar31. Serena TE, Yaakov R, Serena L, Mayhugh T, Harrell K. Comparing near infrared spectroscopy and transcutaneous oxygen measurement in hard-to-heal wounds: a pilot study. J Wound Care. 2020;29:S4–S9. https://doi.org/10.12968/jowc.2020.29.sup6.s4 Google Scholar32. Sowa MG, Kuo WC, Ko ACT, Armstrong DG. Review of near-infrared methods for wound assessment. J Biomed Opt. 2016;21(9):091304. https://doi.org/10.1117/1.jbo.21.9.091304 Google Scholar33. Leenstra B, de Kleijn R, Kuppens G, Verhoeven BAN, Hinnen JW, de Borst GJ. Photo-optical transcutaneous oxygen tension measurement is of added value to predict diabetic foot ulcer healing: an observational study. J Clin Med. 2020;9(10):1–9. https://doi.org/10.3390/jcm9103291 Google Scholar34. Fife CE, Buyukcakir C, Otto GH. The predictive value of transcutaneous oxygen tension measurement in diabetic lower extremity ulcers treated with hyperbaric oxygen therapy: a retrospective analysis of 1,144 patients. Wound Repair Regen. 2002;10(4):198–207. https://doi.org/10.1046/J.1524-475X.2002.10402.X Google Scholar35. Bowen R, Ginna Treadwell G, Goodwin M. Correlation of near infrared spectroscopy measurements of tissue oxygen saturation with transcutaneous pO2 in patients with chronic wounds. SM Vascular Medicine. 2016;1(2):1–3 Google Scholar36. Katsamouris A, Brewster DC, Megerman J, Cina C, Darling RC, Abbott WM. Transcutaneous oxygen tension in selection of amputation level. Am J Surg. 1984;147(4):510–517. https://doi.org/10.1016/0002-9610(84)90014-X Google Scholar37. Striebel HW, Kretz FJ. Advantages and limitations of pulse oximetry: clinical aspects of O2 transport and tissue oxygenation. 1989:212–229. https://doi.org/10.1007/978-3-642-83872-9_17 Google Scholar38. Castilla DM, Liu ZJ, Velazquez OC. Oxygen: implications for wound healing. Adv Wound Care. 2012;1(6):225. https://doi.org/10.1089/WOUND.2011.0319 Google Scholar39. Hopf HW, Gibson JJ, Angeles AP. Hyperoxia and angiogenesis. Wound Rep Regen. 2005;13(6):558–564. https://doi.org/10.1111/j.1524-475X.2005.00078.x Google Scholar40. Hunt TK, Linsey M, Grislis H, Sonne M, Jawetz E. The effect of differing ambient oxygen tensions on wound infection. Ann Surg. 1975;181(1):35–39. https://doi.org/10.1097/00000658-197501000-00009 Google Scholar41. Gordillo GM, Roy S, Khanna S. Topical oxygen therapy induces vascular endothelial growth factor expression and improves closure of clinically presented chronic wounds. Clin Exp Pharmacol Physiol. 2008;35(8):957–964. https://doi.org/10.1111/j.1440-1681.2008.04934.x Google Scholar42. Sibbald RG, Woo KY, Queen D. Wound bed preparation and oxygen balance - a new component? Int Wound J. 2007;4(S3):9–17. https://doi.org/10.1111/j.1742-481X.2007.00388.x Google Scholar43. Lavery LA, Killeen AL, Farrar D. The effect of continuous diffusion of oxygen treatment on cytokines, perfusion, bacterial load, and healing in patients with diabetic foot ulcers. Int Wound J. 2020;17(6):1986–1995. https://doi.org/10.1111/iwj.13490 Google Scholar44. Gottrup F. Controversies in wound healing. Int J Low Extrem Wounds. 2010;9(1):9. https://doi.org/10.1177/1534734610362738 Google Scholar45. Elsayed NA, Aleppo G, Aroda VR. Retinopathy, neuropathy, and foot care: standards of care in diabetes. Diabetes Care. 2023;46:S203–S215. https://doi.org/10.2337/dc23-S012 Google Scholar46. Chen P, Vilorio NC, Dhatariya K. Guidelines on interventions to enhance healing of foot ulcers in people with diabetes (IWGDF 2023 update). Diabetes Metab Res Rev. 2023. https://doi.org/10.1002/DMRR.3644 Google Scholar47. Sethi A, Khambhayta Y, Vas P. Topical oxygen therapy for healing diabetic foot ulcers: A systematic review and meta-analysis of randomised control trials. Health Sciences Review. 2022;3 Crossref, Google Scholar48. Wen Q, Liu D, Wang X. A systematic review of ozone therapy for treating chronically refractory wounds and ulcers. Int Wound J. 2022;19(4):853–870. https://doi.org/10.1111/iwj.13687 Google Scholar49. Elg F, Hunt S. Hemoglobin spray as adjunct therapy in complex wounds: meta-analysis versus standard care alone in pooled data by wound type across three retrospective cohort controlled evaluations. SAGE Open Med. 2018;6. https://doi.org/10.1177/2050312118784313 Google Scholar50. Nataraj M, Maiya AG, Karkada G. Application of topical oxygen therapy in healing dynamics of diabetic foot ulcers-a systematic review. Rev Diabetic Stud. 2019;15(1):74–82. https://doi.org/10.1900/RDS.2019.15.74 Google Scholar51. Thanigaimani S, Singh T, Golledge J. Topical oxygen therapy for diabetes-related foot ulcers: a systematic review and meta-analysis. Diabetic Med. 2021;38(8). https://doi.org/10.1111/dme.14585 Google Scholar52. Connaghan F, Avsar P, Patton D, O'Connor T, Moore Z. Impact of topical oxygen therapy on diabetic foot ulcer healing rates: a systematic review. J Wound Care. 2021;30(10):823–829. https://doi.org/10.12968/jowc.2021.30.10.823 Google Scholar53. Sun XK, Li R, Yang XL, Yuan L. Efficacy and safety of topical oxygen therapy for diabetic foot ulcers: an updated systematic review and meta-analysis. Int Wound J. 2022;19(8):2200–2209. https://doi.org/10.1111/iwj.13830 Google Scholar54. Carter MJ, Frykberg RG, Oropallo A. Efficacy of topical wound oxygen therapy in healing chronic diabetic foot ulcers: systematic review and meta-analysis. Adv Wound Care. 2023;12(4):177–186. https://doi.org/10.1089/wound.2022.0041 Google Scholar55. Frykberg RG. Number eight in the service of diabetic foot ulcer healing. Diabetes Care. 2020;43(9):e116–e117. https://doi.org/10.2337/dc20-0729 Google Scholar56. Niederauer MQ, Michalek JE, Liu Q, Papas KK, Lavery LA, Armstrong DG. Continuous diffusion of oxygen improves diabetic foot ulcer healing when compared with a placebo control: a randomised, double-blind, multicentre study. J Wound Care. 2018;27:S30–S45. https://doi.org/10.12968/jowc.2018.27.Sup9.S30 Google Scholar57. Niederauer MQ, Michalek JE, Armstrong DG. A prospective, randomized, double-blind multicenter study comparing continuous diffusion of oxygen therapy to sham therapy in the treatment of diabetic foot ulcers. J Diabetes Sci Technol. 2017;11(5):883–891. https://doi.org/10.1177/1932296817695574 Google Scholar58. Lavery LA, Niederauer MQ, Papas KK, Armstrong DG. Does debridement improve clinical outcomes in people with diabetic foot ulcers treated with continuous diffusion of oxygen? Wounds. 2019;31(10):246–251 Medline, Google Scholar59. Serena TE, Bullock NM, Cole W. Topical oxygen therapy in the treatment of diabetic foot ulcers: a multicentre, open, randomised controlled clinical trial. J Wound Care. 2021;30:S7–S14. https://doi.org/10.12968/jowc.2021.30.sup5.s7 Google Scholar60. Bowen J, Ingersoll M, Carlson R. Effect of continuous oxygen diffusion on pain in treatment of chronic wounds. Wound Central. 2018;2(4):186–195 Google Scholar61. Jebril W, Nowak M, Palin L, Nordgren M, Bachar-Wikstrom E, Wikstrom JD. Topical oxygen treatment relieves pain from hard-to-heal leg ulcers and improves healing: a case series. J Wound Care. 2022;31(1):4–11. https://doi.org/10.12968/jowc.2022.31.1.4 Google Scholar62. Driver VR, Reyzelman A, Kawalec J, French M. A prospective, randomized, blinded, controlled trial comparing transdermal continuous oxygen delivery to moist wound therapy for the treatment of diabetic foot ulcers. Ostomy Wound Manage. 2017;63(4):12–28 Medline, Google Scholar63. Azimian J, Dehghan Nayeri N, Pourkhaleghi E, Ansari M. Transdermal wound oxygen therapy on pressure ulcer healing: a single-blind multi-center randomized controlled trial. Iran Red Crescent Med J. 2015;17(11):e20211. https://doi.org/10.5812/ircmj.20211 Google Scholar64. Ladizinsky D, Roe D. New insights into oxygen therapy for wound healing. Wounds. 2010;22(12):294–300 Medline, Google Scholar65. Tawfick W, Sultan S. Does topical wound oxygen (TWO2) offer an improved outcome over conventional compression dressings (ccd) in the management of Refractory Venous Ulcers (RVU)? A parallel observational comparative study. Eur J Vasc Endovasc Surg. 2009;38(1):125–132. https://doi.org/10.1016/j.ejvs.2009.03.027 Google Scholar66. Tawfick WA, Sultan S. Technical and clinical outcome of topical wound oxygen in comparison to conventional compression dressings in the management of refractory nonhealing venous ulcers. Vasc Endovascular Surg. 2013;47(1):30–37. https://doi.org/10.1177/1538574412467684 Google Scholar67. Yellin JI, Gaebler JA, Zhou FF. Reduced hospitalizations and amputations in patients with diabetic foot ulcers treated with cyclical pressurized topical wound oxygen therapy: real-world outcomes. Adv Wound Care. 2022;11(12):657–665. https://doi.org/10.1089/wound.2021.0118 Google Scholar68. Wu S, Carter M, Cole W, Crombie R, Kapp D, Kim P. Best practice for use of biomaterials: a new definition and categorisation – CAMPs. J Wound Care. 2023;32(4Suppl. 4a):S1–S32 Link, Google Scholar69. Scholander PF. Oxygen transport through hemoglobin solutions. Science (1979). 1960;131(3400):585–590. https://doi.org/10.1126/science.131.3400.585 Google Scholar70. Dissemond J, Kröger K, Storck M, Risse A, Engels P. Topical oxygen wound therapies for chronic wounds: a review. J Wound Care. 2015;24(2):53–63. https://doi.org/10.12968/jowc.2015.24.2.53 Google Scholar71. Petri M, Stoffels I, Griewank K. Oxygenation status in chronic leg ulcer after topical hemoglobin application may act as a surrogate marker to find the best treatment strategy and to avoid ineffective conservative long-term therapy. Mol Imaging Biol. 2018;20(1):124–130. https://doi.org/10.1007/s11307-017-1103-9 Google Scholar72. Petri M, Stoffels I, Jose J. Photoacoustic imaging of real-time oxygen changes in chronic leg ulcers after topical application of a haemoglobin spray: a pilot study. J Wound Care. 2016;25(2):87–91. https://doi.org/10.12968/jowc.2016.25.2.87 Google Scholar73. Hunt S, Elg F. The clinical effectiveness of haemoglobin spray as adjunctive therapy in the treatment of chronic wounds. J Wound Care. 2017;26(9):558–568. https://doi.org/10.12968/jowc.2017.26.9.558 Google Scholar74. Healthcare Improvement Scotland. Innovative medical technology overview: Granulox® haemoglobin spray. 2016. https://shtg.scot/our-advice/granulox-haemoglobin-spray (accessed 12 March 2023) Google Scholar75. Arenbergerova M, Engels P, Gkalpakiotis S, Dubská Z, Arenberger P. Einfluss von topischem Hämoglobin auf die Heilung von Patienten mit Ulcus cruris venosum. Hautarzt. 2013;64(3):180–186. https://doi.org/10.1007/s00105-012-2528-3 Google Scholar76. Haycocks S, McCardle J, Findlow AH, Guttormsen K. Evaluating the effect of a haemoglobin spray on size reduction in chronic DFUs. Br J Nurs. 2016;25(6):S54–S62. https://doi.org/10.12968/bjon.2016.25.6.S54 Google Scholar77. Bateman SD. Topical haemoglobin spray for diabetic foot ulceration. Br J Nurs. 2015;24:S24–S29. https://doi.org/10.12968/bjon.2015.24.Sup12.S24 Google Scholar78. Lo JF, Brennan M, Merchant Z. Microfluidic wound bandage: localized oxygen modulation of collagen maturation. Wound Rep Regen. 2013;21(2):226–234. https://doi.org/10.1111/wrr.12021 Google Scholar79. Lairet KF, Baer D, Leas ML, Renz EM, Cancio LC. Evaluation of an oxygen-diffusion dressing for accelerated healing of donor-site wounds. J Burn Care Res. 2014;35(3):214–218. https://doi.org/10.1097/BCR.0b013e31829b3338 Google Scholar80. Ivins N, Simmonds W, Turner A, Harding K. The use of an oxygenating hydrogel dressing in VLU. Wounds UK 2007. 2007;3:77–81 Google Scholar81. Davis P, Wood L, Wood Z, Eaton A, Wilkins J. Clinical experience with a glucose oxidase-containing dressing on recalcitrant wounds. J Wound Care. 2009;18(3). https://doi.org/10.12968/jowc.2009.18.3.39812 Google Scholar82. Serena TE, Andersen C, Cole W, Garoufalis M, Frykberg R, Simman R. Guidelines for the use of topical oxygen therapy in the treatment of hard-to-heal wounds based on a Delphi consensus. J Wound Care. 2022;31:S20–S24. https://doi.org/10.12968/jowc.2022.31.Sup3.S20 Google Scholar83. Tettelbach WH, Cazzell SM, Hubbs B, De Jong JL, Forsyth RA, Reyzelman AM. The influence of adequate debridement and placental-derived allografts on diabetic foot ulcers. J Wound Care. 2022;31(9):16–26. https://doi.org/10.12968/jowc.2022.31.sup9.s16 Google Scholar84. Kennon B, Leese GP, Cochrane L. Reduced incidence of lower-extremity amputations in people with diabetes in Scotland: a nationwide study. Diabetes Care. 2012;35(12):2588–2590. https://doi.org/10.2337/dc12-0511 Google Scholar85. Kalliainen LK, Gordillo GM, Schlanger R, Sen CK. Topical oxygen as an adjunct to wound healing: a clinical case series. Pathophysiology. 2003;9(2):81–87. https://doi.org/10.1016/S0928-4680(02)00079-2 Google Scholar86. Kelly CA, Lynes D, O'Brien MR, Shaw B. A wolf in sheep's clothing? Patients' and healthcare professionals' perceptions of oxygen therapy: an interpretative phenomenological analysis. Clinical Respiratory Journal. 2018;12(2):616–632. https://doi.org/10.1111/crj.12571 Google Scholar87. Kelly CA, Maden M. How do respiratory patients perceive oxygen therapy? A critical interpretative synthesis of the literature. Chron Respir Dis. 2014;11(4):209–228. https://doi.org/10.1177/1479972314551561 Google Scholar88. McDonald CF. Home oxygen therapy. Aust Prescr. 2022;45(1):21–24. https://doi.org/10.18773/austprescr.2022.007 Google Scholar89. Kelly CA, Maden M. How do health-care professionals perceive oxygen therapy? A critical interpretive synthesis of the literature. Chron Respir Dis. 2015;12(1):11–23. https://doi.org/10.1177/1479972314562408 Google Scholar90. Augustin M, Conde Montero E, Zander N. Validity and feasibility of the wound-QoL questionnaire on health-related quality of life in chronic wounds. Wound Rep Regen. 2017;25(5):852–857. https://doi.org/10.1111/wrr.12583 Google Scholar91. Amesz SF, Klein TM, Meulendijks AM. A translation and preliminary validation of the Dutch Wound-QoL questionnaire. BMC Dermatol. 2020;20(1). https://doi.org/10.1186/s12895-020-00101-2 Google Scholar92. Blome C, Baade K, Sebastian Debus E, Price P, Augustin M. The “Wound-QoL”: a short questionnaire measuring quality of life in patients with chronic wounds based on three established disease-specific instruments. Wound Rep Regen. 2014;22(4):504–514. https://doi.org/10.1111/wrr.12193 Google Scholar93. Ferguson L, Pawlak R. Health literacy: the road to improved health outcomes. J Nurs Pract. 2011;7(2):123–129 Crossref, Google Scholar94. Sykes PK, FitzGerald M. Consumer engagement in the development of a video to inform health service clients about the risks and prevention of venous thromboembolism. Eur J Pers Cent Healthc. 2015;3(3). Medline, Google Scholar95. Gordillo GM, Sen CK. Evidence-based recommendations for the use of topical oxygen therapy in the treatment of lower extremity wounds. Int J Lower Extremity Wound. 2009;8(2):105–111. https://doi.org/10.1177/1534734609335149 Google Scholar96. Orsted HL, Poulson R, Baum J. Evidence-based practice standards for the use of topical pressurised oxygen therapy. Int Wound J. 2012;9(3):271–284. https://doi.org/10.1111/j.1742-481X.2012.00956.x Google Scholar97. Cole W, Yoder CM, Coe S. The use of topical oxygen therapy to treat a calciphylaxis wound during a global pandemic: a case report. Wounds. 2020;32(11):294–298 Medline, Google Scholar98. Tickle J. A topical haemoglobin spray for oxygenating pressure ulcers: a pilot study. Br J Community Nurs. 2015;20:S12–S18. https://doi.org/10.12968/bjcn.2015.20.Sup3.S12 Google Scholar99. Tettelbach WH, Armstrong DG, Chang TJ. Cost-effectiveness of dehydrated human amnion/chorion membrane allografts in lower extremity diabetic ulcer treatment. J Wound Care. 2022;31(Sup2):S10–S31. https://doi.org/10.12968/JOWC.2022.31.SUP2.S10 Google Scholar100. Al-Gharibi KA, Sharstha S, Al-Faras MA. Cost-effectiveness of wound care a concept analysis. Sultan Qaboos Univ Med J. 2018;18(4):e433–e439. https://doi.org/10.18295/squmj.2018.18.04.002 Google Scholar101. Cohen DJ, Reynolds MR. Interpreting the results of cost-effectiveness studies. J Am Coll Cardiol. 2008;52(25):2119–2126. https://doi.org/10.1016/j.jacc.2008.09.018 Google Scholar102. Chan BCF, Campbell KE. An economic evaluation examining the cost-effectiveness of continuous diffusion of oxygen therapy for individuals with diabetic foot ulcers. Int Wound J. 2020;17(6):1791–1808. https://doi.org/10.1111/iwj.13468 Google Scholar103. Brüggenjürgen B, Hunt SD, Eberlein T. Wundversorgung des diabetischen Fuß-Ulkus (DFU) – inkrementelle Kostenanalyse der mit einem Hämoglobinspray erweiterten Therapie der diabetischneu-ropathischen Fußläsion in Deutschland. Gesundh Ökon Qual Manag. 2018;23(6):320–327. https://doi.org/10.1055/s-0043-120204 Google Scholar104. Scottish Health Technologies Group. Innovative medical technology overview: number 006/2016. Granulox® haemoglobin spray. 2016. https://shtg.scot/our-advice/granulox-haemoglobin-spray/ (accessed 6 February 2023) Google Scholar105. Blackman E, Moore C, Hyatt J, Railton R, Frye C. Topical wound oxygen therapy in the treatment of severe diabetic foot ulcers: a prospective controlled study. Ostomy Wound Manage. 2010;56(6):24–31 Medline, Google Scholar106. Kröger K, Gäbel G, Juntermanns B. Assessment of acceptability and ease of use of haemoglobin spray (Granulox®) in the management of chronic wounds. Chron Wound Care Manage Res. 2020;7:1–10. https://doi.org/10.2147/CWCMR.S212108 Google Scholar107. Elg F, Bothma G. Cost-effectiveness of adjunct haemoglobin spray in the treatment of hard-to-heal wounds in a UK NHS primary care setting. J Wound Care. 2019;28(12):844–849. https://doi.org/10.12968/jowc.2019.28.12.844 Google Scholar108. Centers for Medicare & Medicaid Services. Topical oxygen therapy (L37873). 2023. www.cms.gov/medicare-coverage-database/view/lcd.aspx?lcdid=37873 (accessed 8 February 2023) Google Scholar109. Loh C, Tan QY, Eng DLK, Walsh SR, Chong TT, Tang TY. Granulox—the use of topical hemoglobin to aid wound healing: a literature review and case series from Singapore. Int J Lower Extremity Wound. 2021;20(2):88–97. https://doi.org/10.1177/1534734620910318 Google Scholar110. Marotz J, Kulcke A, Siemers F. Extended perfusion parameter estimation from hyperspectral imaging data for bedside diagnostic in medicine. Molecules. 2019;24(22). https://doi.org/10.3390/MOLECULES24224164 Google Scholar111. Fedorko L, Bowen JM, Jones W. Hyperbaric oxygen therapy does not reduce indications for amputation in patients with diabetes with nonhealing ulcers of the lower limb: a prospective, double-blind, randomized controlled clinical trial. Diabetes Care. 2016;39(3):392–399. https://doi.org/10.2337/dc15-2001 Google Scholar112. Santema KTB, Stoekenbroek RM, Koelemay MJW. Hyperbaric oxygen therapy in the treatment of ischemic lower-extremity ulcers in patients with diabetes: results of the DAMO2CLES multicenter randomized clinical trial. Diabetes Care. 2018;41(1):112–119. https://doi.org/10.2337/dc17-0654 Google Scholar113. Margolis DJ, Gupta J, Hoffstad O. Lack of effectiveness of hyperbaric oxygen therapy for the treatment of diabetic foot ulcer and the prevention of amputation a cohort study. Diabetes Care. 2013;36(7):1961–1966. https://doi.org/10.2337/dc12-2160 Google Scholar114. Kranke P, Bennett MH, Martyn-St James M, Schnabel A, Debus SE, Weibel S. Hyperbaric oxygen therapy for chronic wounds. Cochrane Dat Syst Rev. 2015;2015(6). https://doi.org/10.1002/14651858.CD004123.pub4 Google Scholar115. Centers for Medicare & Medicaid Services. Hyperbaric oxygen therapy. 2023. www.cms.gov/medicare-coverage-database/view/ncd.aspx?ncdid=12 (accessed 14 March 2023) Google Scholar116. Hammarlund C, Sundberg T. Hyperbaric oxygen reduced size of chronic leg ulcers: a randomized double-blind study. Plast Reconstr Surg. 1994; 93(4):829 Crossref, Medline, Google Scholar117. Thistlethwaite KR, Finlayson KJ, Cooper PD. The effectiveness of hyperbaric oxygen therapy for healing chronic venous leg ulcers: a randomized, double-blind, placebo-controlled trial. J Vasc Surg. 2019; 7(3):466. https://doi.org/10.1016/j.jvsv.2019.02.008 Google Scholar118. Hunt SD, Elg F. Clinical effectiveness of hemoglobin spray (Granulox®) as adjunctive therapy in the treatment of chronic diabetic foot ulcers. Diabet Foot Ankle. 2016;7:33101. https://doi.org/10.3402/dfa.v7.33101 Google Scholar119. Hunt SD, Elg F, Percival SL. Assessment of clinical effectiveness of haemoglobin spray as adjunctive therapy in the treatment of sloughy wounds. J Wound Care. 2018;27(4):210–219. https://doi.org/10.12968/jowc.2018.27.4.210 Google Scholar FiguresReferencesRelatedDetails 1 August 2023Volume 32Issue Sup8b ISSN (print): 0969-0700ISSN (online): 2052-2916 Metrics History Published online 22 August 2023 Published in print 1 August 2023 Information© MA Healthcare LimitedPDF download

Referência(s)
Altmetric
PlumX