Artigo Revisado por pares

PLENARY SESSIONS

2021; Wiley; Volume: 56; Issue: S2 Linguagem: Inglês

10.1002/ppul.25497

ISSN

8755-6863

Tópico(s)

Chronic Obstructive Pulmonary Disease (COPD) Research

Resumo

Pediatric PulmonologyVolume 56, Issue S2 p. S7-S21 OTHER AND ORIGINAL PLENARY SESSIONS First published: 23 June 2021 https://doi.org/10.1002/ppul.25497Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1 Contreras ZA, Chen Z, Roumeliotaki T, et al. Does early onset asthma increase childhood obesity risk? A pooled analysis of 16 European cohorts. Eur Respir J. 2018: 52. 2 Chen YC, Tu YK, Huang KC, Chen PC, Chu DC, Lee YL. Pathway from central obesity to childhood asthma. Physical fitness and sedentary time are leading factors. Am J Respir Crit Care Med. 2014; 189: 1194-203. 3 Al-Alwan A, Bates JH, Chapman DG, et al. The nonallergic asthma of obesity. A matter of distal lung compliance. Am J Respir Crit Care Med. 2014; 189: 1494-502. 4 Marijsse GS, Seys SF, Schelpe AS, et al. Obese individuals with asthma preferentially have a high IL-5/IL-17A/IL-25 sputum inflammatory pattern. Am J Respir Crit Care Med. 2014; 189: 1284-5. 5 Forno E, Lescher R, Strunk R, et al. Decreased response to inhaled steroids in overweight and obese asthmatic children. J Allergy Clin Immunol. 2011; 127: 741-9. 6 McGarry ME, Castellanos E, Thakur N, et al. Obesity and bronchodilator response in black and Hispanic children and adolescents with asthma. Chest. 2015; 147: 1591-8. 7 Martinez FD, Guerra S. Early Origins of Asthma. Role of Microbial Dysbiosis and Metabolic Dysfunction. Am J Respir Crit Care Med. 2018; 197: 573-9. 8 Chapman DG, Irvin CG, Kaminsky DA, Forgione PM, Bates JH, Dixon AE. Influence of distinct asthma phenotypes on lung function following weight loss in the obese. Respirology. 2014; 19: 1170-7. 9 Kramer CK, Zinman B, Retnakaran R. Are metabolically healthy overweight and obesity benign conditions?: A systematic review and meta-analysis . Ann Intern Med. 2013; 159: 758-69. 10 Ong KK, Petry CJ, Emmett PM, et al. Insulin sensitivity and secretion in normal children related to size at birth, postnatal growth, and plasma insulin-like growth factor-I levels. Diabetologia. 2004; 47: 1064-70. 11 Astley CM, Todd JN, Salem RM, et al. Genetic Evidence That Carbohydrate-Stimulated Insulin Secretion Leads to Obesity. Clin Chem. 2018; 64: 192-200. 12 Cardet JC, Ash S, Kusa T, Camargo CA, Israel E. Insulin resistance modifies the association between obesity and current asthma in adults. Eur Respir J. 2016; 48: 403-10. 13 Lombardi E, Stern DA, Sherrill D, et al. Peak flow variability in childhood and body mass index in adult life. J Allergy Clin Immunol. 2019; 143: 1224-6 e9. References 1 Kaditis A, Kheirandish-Gozal L, Gozal D. Algorithm for the diagnosis and treatment of pediatric OSA: a proposal of two pediatric sleep centers. Sleep Med. 2012; 13: 217-227. 2 Marcus CL, Moore RH, Rosen CL, Giordani B, Garetz SL, Taylor HG, Mitchell RB, Amin R, Katz ES, Arens R, Paruthi S, Muzumdar H, Gozal D, Thomas NH, Ware J, Beebe D, Snyder K, Elden L, Sprecher RC, Willging P, Jones D, Bent JP, Hoban T, Chervin RD, Ellenberg SS, Redline S. A randomized trial of adenotonsillectomy for childhood sleep apnea. N Engl J Med. 2013; 368: 2366-2376. 3 Marcus CL, Jay Brooks L, Draper KA, Gozal D, Carol Halbower A, Jones J, Schechter MS, Howard Sheldojn S, Spruyt K, Davidson Ward S, Lehmann C, Shiffman RN. Diagnosis and Management of Childhood Obstructive Sleep Apnea Syndrome. Pediatrics. 2012; 130: 576-584. 4 Brouillette RT, Morielli A, Leimanis A, Waters KA, Luciano R, Ducharme FM. Nocturnal pulse oximetry as an abbreviated testing modality for pediatric obstructive sleep apnea. Pediatrics. 2000; 105: 405-412. 5 Traeger N, Schultz B, Pollock AN, Mason T, Marcus CL, Arens R. Polysomnographic values in children 2-9 years old: additional data and review of the literature. Pediatr Pulmonol. 2005; 40: 22-30. 6 Urschitz MS, Wolff J, Von Einem V, Urschitz-Duprat PM, Schlaud M, Poets CF. Reference values for nocturnal home pulse oximetry during sleep in primary school children. Chest. 2003; 123: 96-101. 7 Scholle S, Wiater A, Scholle HC. Normative values of polysomnographic parameters in childhood and adolescence: cardiorespiratory parameters. Sleep Med. 2011; 12: 988-996. 8 Nixon GM, Kermack AS, Davis GM, Manoukian JJ, Brown KA, Brouillette RT. Planning adenotonsillectomy in children with obstructive sleep apnea: the role of overnight oximetry. Pediatrics. 2004; 113: e19-25. 9 Villa MP, Pietropaoli N, Supino MC, Vitelli O, Rabasco J, Evangelisti M, Del Pozzo M, Kaditis AG. Diagnosis of Pediatric Obstructive Sleep Apnea Syndrome in Settings With Limited Resources. JAMA Otolaryngol Head Neck Surg. 2015; 141: 990-996. 10 Papadakis CE, Chaidas K, Chimona TS, Asimakopoulou P, Ladias A, Proimos EK, Miligkos M, Kaditis AG. Use of Oximetry to Determine Need for Adenotonsillectomy for Sleep-Disordered Breathing. Pediatrics. 2018; 142:e20173382. References [1] Kerem B, Rommens JM, Buchanan JA, Markiewicz D, Cox TK, Chakravarti A, et al. Identification of the cystic fibrosis gene: genetic analysis. Science. 1989; 245: 1073-80. [2] Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989; 245: 1066-73. [3] Kerem E, Corey M, Kerem BS, Rommens J, Markiewicz D, Levison H, et al. The relation between genotype and phenotype in cystic fibrosis--analysis of the most common mutation (delta F508). N Engl J Med. 1990; 323: 1517-22. [4] Augarten A, Kerem BS, Kerem E, Gazit E, Yahav Y. Correlation between genotype and phenotype in patients with cystic fibrosis. The New England Journal of Medicine. 1994; 330: 866. [5] Ratjen F, Bell SC, Rowe SM, Goss CH, Quittner AL, Bush A. Cystic fibrosis. Nature Reviews Disease Primers. 2015; 1: 15010. https://doi.org/10.1038/nrdp.2015.10 References 1 Wu Z, McGoogan JM. Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases from the Chinese Center for Disease Control and Prevention. JAMA - Journal of the American Medical Association. 2020; 323(13): 1239-42. 2 Gudbjartsson DF, Helgason A, Jonsson H, et al. Spread of SARS-CoV-2 in the Icelandic Population. New England Journal of Medicine. 2020; 382(24): 2302-15. 3 Rostami A, Sepidarkish M, Leeflang MMG, et al. SARS-CoV-2 seroprevalence worldwide: a systematic review and meta-analysis . Clinical Microbiology and Infection. 2021; 27(3): 331-40. 4 Swann Ov, Holden KA, Turtle L, et al. Clinical characteristics of children and young people admitted to hospital with covid-19 in United Kingdom: prospective multicentre observational cohort study (2020; 370: m3249-15. Available from : https://doi.org/10.1136/bmj.m3249 5 Dufort EM, Koumans EH, Chow EJ, et al. Multisystem Inflammatory Syndrome in Children in New York State. New England Journal of Medicine. 2020; 383(4): 347-58. 6 Whittaker E, Bamford A, Kenny J, et al. Clinical Characteristics of 58 Children with a Pediatric Inflammatory Multisystem Syndrome Temporally Associated with SARS-CoV-2 . JAMA - Journal of the American Medical Association. 2020; 324(3): 259-69. 7 Davies P, Evans C, Kanthimathinathan HK, et al. Intensive care admissions of children with paediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2 (PIMS-TS) in the UK: a multicentre observational study. The Lancet child and Adolescent Health [Internet]. 2020; 4(9): 669-77 Available from http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed%26id=32653054%26retmode=ref%26cmd=prlinks 8 Tullie L, Ford K, Bisharat M, et al. Gastrointestinal features in children with COVID-19: an observation of varied presentation in eight children. The Lancet child and Adolescent Health [Internet]. 2020; 4(7): e19-20. Available from https://doi.org/10.1016/S2352-4642(20)30165-6 9 Hacohen Y, Abdel-Mannan O, Eyre M, et al. Neurologic and Radiographic Findings Associated with COVID-19 Infection in Children. JAMA Neurology. 2020; 77(11): 1440-5. 10 Feldstein LR, Rose EB, Horwitz SM, et al. Multisystem Inflammatory Syndrome in U.S. Children and Adolescents. The. New England journal of medicine [Internet]. 2020; 383(4): 334-46 Available from http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed%26id=32598831%26retmode=ref%26cmd=prlinks 11 Feldstein LR, Tenforde MW, Friedman KG, et al. Characteristics and Outcomes of US Children and Adolescents with Multisystem Inflammatory Syndrome in Children (MIS-C) Compared with Severe Acute COVID-19 . JAMA - Journal of the American Medical Association. 2021; 325(11): 1074-87. 12CDC C for DC and P. Multisystem Inflammatory Syndrome in Children (MIS-C) Associated with Coronavirus Disease 2019 (COVID-19) [Internet]. Available from https://emergency.cdc.gov/han/2020/han00432.asp 13WHO Multisystem Inflammatory Syndrome in Children and Adolescents with COVID-19. Available from: https://www.who.int/publications/i/item/multisystem-inflammatory-syndrome-in-children-and-adolescents-with-covid-19 14RCPCH Paediatric multisystem inflammatory syndrome temporally associated with COVID-19 (PIMS) [Internet]. Available from https://www.rcpch.ac.uk/resources/paediatric-multisystem-inflammatory-syndrome-temporally-associated-covid-19-pims-guidance 15 Ahmed M, Advani S, Moreira A, et al. Multisystem inflammatory syndrome in children: A systematic review. EClinicalMedicine [Internet]. 2020; 26: 100527 Available from https://linkinghub.elsevier.com/retrieve/pii/S2589537020302716 16 Harwood R, Allin B, Jones CE, et al. A national consensus management pathway for paediatric inflammatory multisystem syndrome temporally associated with COVID-19 (PIMS-TS): results of a national Delphi process. The Lancet child and Adolescent Health [Internet] 2020;: Available from https://linkinghub.elsevier.com/retrieve/pii/S2352464220303047 17 Henderson LA, Canna SW, Friedman KG, et al. American College of Rheumatology Clinical Guidance for Multisystem Inflammatory Syndrome in Children Associated With SARS-CoV-2 and Hyperinflammation in Pediatric COVID-19: Version 1. Arthritis & rheumatology (Hoboken, NJ) [Internet] 2020; 72(11): 1791–805. : Available from http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed%26id=32705809%26retmode=ref%26cmd=prlinks 18 Kabeerdoss J, Pilania RK, Karkhele R, Kumar TS, Danda D, Singh S. Severe COVID-19, multisystem inflammatory syndrome in children, and Kawasaki disease: immunological mechanisms, clinical manifestations and management. Rheumatology International [Internet]. 2021; 41(1): 19-32. Available from https://doi.org/10.1007/s00296-020-04749-4 19 Burns JC, Glodé MP. Kawasaki syndrome. Lancet. 2004; 364(9433): 533-44. 20 Consiglio CR, Cotugno N, Sardh F, et al. The Immunology of Multisystem Inflammatory Syndrome in Children with COVID-19 . Cell [Internet]. 2020: 1-37. Available from https://doi.org/10.1016/j.cell.2020.09.016 21 Lee PY, Day-Lewis M, Henderson LA, et al. Distinct clinical and immunological features of SARS–CoV-2–induced multisystem inflammatory syndrome in children. The Journal of clinical investigation [Internet]. 2020; 130(11): 5942-50 Available from https://www.jci.org/articles/view/141113 22 Carter MJ, Fish M, Jennings A, et al. Peripheral immunophenotypes in children with multisystem inflammatory syndrome associated with SARS-CoV-2 infection. Nature Medicine [Internet]. 2020; 20: 453-7 Available from http://www.nature.com/articles/s41591-020-1054-6 23 Ludvigsson JF Case report and systematic review suggest that children may experience similar long-term effects to adults after clinical COVID-19 . Acta Paediatrica [Internet] 2020;: Available from http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed%26id=33205450%26retmode=ref%26cmd=prlinks References 1 Bush A. Lung Development and Aging. Ann Am Thorac Soc. 2016; 13Supplement 5: S438-S446. 2 Hilland M, Røksund OD, Sandvik L, Haaland Ø, Aarstad HJ, Halvorsen T, Heimdal JH. Congenital laryngomalacia is related to exercise-induced laryngeal obstruction in adolescence. Arch Dis Child. 2016; 101: 443-8. 3 Røksund OD, Clemm H, Heimdal JH, Aukland SM, Sandvik L, Markestad T, Halvorsen T. Left vocal cord paralysis after extreme preterm birth, a new clinical scenario in adults. Pediatrics. 2010; 126: e1569-77. 4 Lukkarinen H, Pelkonen A, Lohi J, Malmström K, Malmberg LP, Kajosaari M, Lindahl H, Föhr A, Ruuskanen O, Mäkelä MJ. Neuroendocrine cell hyperplasia of infancy: a prospective follow-up of nine children. Arch Dis Child. 2013; 98: 141-4. 5 Githinji LN, Gray DM, Hlengwa S, Myer L, Zar HJ. Lung Function in South African Adolescents Infected Perinatally with HIV and Treated Long-Term with Antiretroviral Therapy. Ann Am Thorac Soc. 2017; 14: 722-729. 6 Masekela R, Anderson R, Moodley T, Kitchin OP, Risenga SM, Becker PJ, Green RJ. HIV-related bronchiectasis in children: an emerging spectre in high tuberculosis burden areas. Int J Tuberc Lung Dis. 2012; 16: 114-9. 7 Gupte AN, Paradkar M, Selvaraju S, Thiruvengadam K, Shivakumar SVBY, et al. Assessment of lung function in successfully treated tuberculosis reveals high burden of ventilatory defects and COPD. PLoS One. 2019; 14:e0217289. 8 Gray DM, Turkovic L, Willemse L, Visagie A, Vanker A, Stein DJ, Sly PD, Hall GL, Zar HJ. Lung Function in African Infants in the Drakenstein Child Health Study. Impact of Lower Respiratory Tract Illness. Am J Respir Crit Care Med. 2017; 195: 212-220. 9 https://www.nice.org.uk/sharedlearning/implementing-transition-care-locally-and-nationally-using-the-ready-steady-go-programme 10 Chatwin M, Tan HL, Bush A, Rosenthal M, Simonds AK. Long Term Non-Invasive Ventilation in Children: Impact on Survival and Transition to Adult Care. PLoS One. 2015; 10:e0125839. 11 Bush A, Bolton C. Longer term sequelae of prematurity: the adolescent and young adult. In: AM Hibbs, MS Muhlebach, eds. Respiratory outcomes in preterm infants from infancy to childhood. USA: Publ Humana press, 99-118. 122017 King PT, Holdsworth SR, Farmer M, Freezer N, Villanueva E, Holmes PW. Phenotypes of adult bronchiectasis: onset of productive cough in childhood and adulthood. COPD. 2009; 6: 130-6. References 1 Cullen KA, Ambrose BK, Gentzke AS, et al Use of electronic cigarettes and any tobacco product among middle and high school students — United States, 2011-2018 . MMWR Morb Mortal Wkly Rep. 2018; 67: 1276-7. 2 Cullen KA, Gentzke AS, Sawdey MD, et al E-cigarette use among youth in the united states, 2019. JAMA 2019 https://doi.org/10.1001/jama.2019.18387 3 Dinakar C, O'Connor GT. The health effects of electronic cigarettes. N Engl J Med. 2016; 375: 1372-81. 4 Ferkol TW, Farber HJ, La Grutta S, et al Electronic cigarette use in youths: a position statement of the Forum of International Respiratory Societies. Eur Respir J. 2018: 51pii:1800278 . 5 Ghosh A, Coakley RC, Mascenik T, et al Chronic e-cigarette exposure alters the human bronchial epithelial proteome. Am J Respir Crit Care Med. 2018; 198: 67-76. 6 Kaur G, Pinkston R, Mclemore B, et al Immunological and toxicological risk assessment of e-cigarettes . Eur Respir Rev. 2018; 27: 170119. https://doi.org/10.1183/16000617.0119-2017 7 Kennedy RD, Awopegba A, De León E, et al Global approaches to regulating electronic cigarettes. Tob Control. 2017; 26: 440-5. 8 Kong G, Morean ME, Cavallo DA, et al Reasons for electronic cigarette experimentation and discontinuation among adolescents and young adults. Nicotine Tob Res. 2015; 17: 847-54. 9 Layden JE, Ghinai I, Pray I, et al Pulmonary illness related to e-cigarette use in Illinois and Wisconsin -- preliminary report. N Engl J Med. 2019. https://doi.org/10.1056/NEJMoa1911614 10 Lee M-S, Allen JG, Christiani DC. Endotoxin and 1→3-β-D-glucan contamination in electronic cigarette products sold in the United States. Environ Health Perspect. 2019; 127: 047008. 11 Leventhal AM, Strong DR, Kirkpatrick MG, et al Association of electronic cigarette use with initiation of combustible tobacco product smoking in early adolescence. JAMA. 2015; 314: 700-7. 12 McConnell R, Barrington-Trimis JL, Wang K, et al Electronic-cigarette use and respiratory symptoms in adolescents. Am J Respir Crit Care Med. 2017; 195: 1043-9. 13 Reidel B, Radicioni G, Ford AA, et al E-cigarette use causes a unique innate immune response in the lung, involving increased neutrophilic activation and altered mucin secretion. Am J Respir Crit Care Med. 2017; 197: 492-501. 14 Rowell TR, Tarran R. Will chronic e-cigarette use cause lung disease? Am J Physiol Lung Cell Mol Biol. 2015; 309: L1398-409. 15 U.S. Department of Health and Human Services., E-Cigarette Use Among Youth and Young Adults. A Report of the Surgeon General. Atlanta, GA: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health 2016. References 1 Christie R, Scadding J, Boyd J. Controlled trial of effects of cortisone acetate in chronic asthma. Lancet. 1956; 271(6947): 798-803. 2 Morrow Brown H. Treatment of chronic asthma with prednisolone; significance of eosinophils in the sputum. Lancet. 1958; 2(7059): 1245-7. 3 Akar-Ghibril N, Casale T, Custovic A, Phipatanakul W. Allergic Endotypes and Phenotypes of Asthma. J Allergy Clin Immunol Pract. 2020; 8(2): 429-40. 4 Lemanske RF Jr., Mauger DT, Sorkness CA, Jackson DJ, Boehmer SJ, Martinez FD, et al. Step-up therapy for children with uncontrolled asthma receiving inhaled corticosteroids. N Engl J Med. 2010; 362(11): 975-85. 5 Saglani S, Custovic A. Childhood Asthma: Advances Using Machine Learning and Mechanistic Studies. Am J Respir Crit Care Med. 2019; 199(4): 414-22. 6 Howard R, Rattray M, Prosperi M, Custovic A. Distinguishing Asthma Phenotypes Using Machine Learning Approaches. Curr Allergy Asthma Rep. 2015; 15(7): 38. 7 Oksel C, Granell R, Mahmoud O, Custovic A, Henderson AJ, Stelar, et al. Causes of variability in latent phenotypes of childhood wheeze. J Allergy Clin Immunol. 2019; 143(5): 1783-90 e11. 8 Oksel C, Granell R, Haider S, Fontanella S, Simpson A, Turner S, et al. Distinguishing Wheezing Phenotypes from Infancy to Adolescence: A Pooled Analysis of Five Birth Cohorts. Ann Am Thorac Soc. 2019. 9 Deliu M, Yavuz TS, Sperrin M, Belgrave D, Sahiner UM, Sackesen C, et al. Features of asthma which provide meaningful insights for understanding the disease heterogeneity. Clin Exp Allergy. 2018; 48(1): 39-47. 10 Fitzpatrick AM, Jackson DJ, Mauger DT, Boehmer SJ, Phipatanakul W, Sheehan WJ, et al. Individualized therapy for persistent asthma in young children. The Journal of allergy and clinical immunology. 2016; 138(6): 1608-18.e12. 11 Sonntag HJ, Filippi S, Pipis S, Custovic A. Blood Biomarkers of Sensitization and Asthma. Front Pediatr. 2019; 7: 251. 12 Lazic N, Roberts G, Custovic A, Belgrave D, Bishop CM, Winn J, et al. Multiple atopy phenotypes and their associations with asthma: similar findings from two birth cohorts. Allergy. 2013; 68(6): 764-70. 13 Fontanella S, Frainay C, Murray CS, Simpson A, Custovic A. Machine learning to identify pairwise interactions between specific IgE antibodies and their association with asthma: A cross-sectional analysis within a population-based birth cohort. PLoS Med. 2018; 15(11):e1002691. References 1 Zhang Y, Bi P, Hiller JE. Climate change and disability-adjusted life years. Journal of environmental health. 2007; 70(3): 32-6. 2 Bernstein AS, Rice MB. Lungs in a warming world: climate change and respiratory health. Chest. 2013; 143(5): 1455-9. 3 Watts N, Amann M, Arnell N, Ayeb-Karlsson S, Belesova K, Boykoff M, et al. The 2019 report of The Lancet Countdown on health and climate change: ensuring that the health of a child born today is not defined by a changing climate. Lancet. 2019; 394(10211): 1836-78. 4 Burke M, Heft-Neal S, Bendavid E. Sources of variation in under-5 mortality across sub-Saharan Africa: a spatial analysis. The Lancet Global health. 2016; 4(12): e936-e45. 5 Heft-Neal S, Burney J, Bendavid E, Burke M. Robust relationship between air quality and infant mortality in Africa. Nature. 2018; 559(7713): 254-8. 6 Bradshaw CJA, Otto SP, Mehrabi Z, Annamalay AA, Heft-Neal S, Wagner Z, et al. Testing the socioeconomic and environmental determinants of better child-health outcomes in Africa: a cross-sectional study among nations. BMJ Open. 2019; 9(9):e029968. 7 Ajanovic S, Valente M, Varo R, Bassat Q Climate Change and the Future Health of Children in Low-Income Countries. Journal of tropical pediatrics. 2020. 8 United Nations DoEaSA, Population Division. World Population Prospects 2019. 9 Malthus T. An Essay on the Principle of Population. London: J. Johnson, in St. Paul's Church-Yard ; 1798. 10 Chalabi DA. Acute respiratory infection and malnutrition among children below 5 years of age in Erbil governorate, Iraq. East Mediterr Health J. 2013; 19(1): 66-70. References 1 Cook J, Beresford F, Fainardi V, et al. Managing the pediatric patient with refractory asthma: a multidisciplinary approach. J Asthma Allergy. 2017; 10: 123-30. 2 Bracken M, Fleming L, Hall P, et al. The importance of nurse-led home visits in the assessment of children with problematic asthma. Arch Dis Child. 2009; 94(10): 780-4. 3 Levy ML. The national review of asthma deaths: what did we learn and what needs to change? Breathe (Sheff). 2015; 11(1): 14-24. 4 Langley RJ, Dryden C, Westwood J, Anderson E, Thompson A, Urquhart D. Once daily combined inhaled steroid and ultra long-acting bronchodilator prescribing in pediatric asthma: a dual Center retrospective cohort study. J Asthma. 2021; 58(4): 512-3. 5 Scicchitano R, Aalbers R, Ukena D, et al. Efficacy and safety of budesonide/formoterol single inhaler therapy versus a higher dose of budesonide in moderate to severe asthma. Curr Med Res Opin. 2004; 20(9): 1403-18. 6 Jorup C, Lythgoe D, Bisgaard H. Budesonide/formoterol maintenance and reliever therapy in adolescent patients with asthma. Eur Respir J. 2018; 51(1). 7 Heaney LG, Busby J, Bradding P, et al. Remotely Monitored Therapy and Nitric Oxide Suppression Identifies Nonadherence in Severe Asthma. Am J Respir Crit Care Med. 2019; 199(4): 454-64. 8 Nagakumar P, Puttur F, Gregory LG, et al. Pulmonary type-2 innate lymphoid cells in paediatric severe asthma: phenotype and response to steroids. Eur Respir J. 2019; 54(2). 9 Ullmann N, Bossley CJ, Fleming L, Silvestri M, Bush A, Saglani S. Blood eosinophil counts rarely reflect airway eosinophilia in children with severe asthma. Allergy. 2013; 68(3): 402-6. 10 Ribeiro V, Andrade J, Rose S, Spencer C, Vicencio A, Bunyavanich S. Children with severe persistent asthma have disparate peripheral blood and lower airway eosinophil levels. J Allergy Clin Immunol Pract. 2019; 7(7): 2494-6. 11 Day S, Jonker AH, Lau LPL, et al. Recommendations for the design of small population clinical trials. Orphanet J Rare Dis. 2018; 13(1): 195. References 1 Laënnec RTH. A treatise in the diseases of the chest and on mediate auscultation. 4th edition. Translation by J Forbes London: Longman; 1819: 1834. 2 Clark NS. Bronchiectasis in childhood. BMJ. 1963; 1: 80-88. https://doi.org/10.1136/bmj.1.5323.80 3 Chang AnneB, Bush Andrew, Grimwood Keith 4 Lewiston NJ. Bronchiectasis in childhood. Pediatr Clin North Am. 1984; 31: 865-78. 5 Karadag B, Karakoc F, Ersu R, Kut A, Bakac S, Dagli E. Non-cystic-fibrosis bronchiectasis in children: a persisting problem in developing countries. Respiration. 2005; 72: 233-238. 6 McShane PJ, Naureckas ET, Tino G, ME S. Non-cystic fibrosis bronchiectasis. Amer J REspir Crit Care Med. 2013; 188: 647-656. 7 Dogru D, Nik-Ain A, Kiper N, Gocmen A, Ozcelik U, Ebru Y, Aslan A. Bronchiectasis: the Consequence of Late Diagnosis inChronic Respiratory Symptoms. Journal of Tropical Pediatrics. 2005; 51: 362-365. 8 Gaillard EA, Carty H, Heaf D, et al. Reversible bronchial dilatation in children: comparison of serial high-resolution computer tomography scans of the lungs. Eur J Radiol. 2003; 47: 215-20. 9 Karakoc GB, Inal A, Yilmaz M, Altintas DU, Kendirli SG. Exhaled breath condensate MMP-9 levels in children with bronchiectasis. Pediatr Pulmonol. 2009; 44: 1010-1016. 10 Yalcın E, Kiper N, Ozcelik U, Dogru D, Fırat P, Sahin A, Arıyurek M, Mocan G, Gurcan N, Gocmen A. Effects of claritromycin on inflammatory parameters and clinical conditions in children with bronchiectasis. Journal of Clinical Pharmacy and Therapeutics. 2006; 31: 49-55. 11 Valery PC, Morris PS, Byrnes PA, et al. Long-term azithromycin for Indigenous children with non-cystic-fibrosis bronchiectasis or chronic suppurative lung disease (Bronchiectasis Intervention Study): a multicenter, double-blind, randomized controlled trial. Lancet Respir Med. 2013; 1:610e20. 12 Satır O, Yesil AM, Emiralioglu N, Tugcu GD, Yalcın E, Dogru D, Kiper N, Ozcelik U. A review of the etiology and clinical presentation of non-cystic fibrosis bronchiectasis: A tertiary care experience. Respiratory Medicine. 2018; 137: 35-39. 13 Edward DC, William IW IIIg, Elena WYH, Kristina LJ,1, Monica Shafferd, Robert A. Sandhausb, Frank van de Veerdonkf Diagnostic evaluation of bronchiectasis.Respiratory Medicine: X 1 2019 100006. 14 Bush A, Floto RA. Pathophysiology, causes and genetics of paediatric and adult bronchiectasis. Respirology. 2019; 24: 1053-1062. 15 Pasteur MC, Bilton D, Hill AT. British thoracic society bronchiectasis non-CF guideline Group. British thoracic society guideline for non-CF bronchiectasis. Thorax. 2010; 65(suppl 1): i1e58. 16 Coutinho D, Fernandes P, Guerra M, Miranda J, Vougab L. Surgical treatment of bronchiectasis: A review of 20 years of experience. RevPortPneumol. 2016; 22(2): 82-85. Volume56, IssueS2Supplement: 20th International Congress of Pediatric Pulmonology June 24–27, 2021June 2021Pages S7-S21 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX