The mushroom body output encodes behavioral decision during sensory-motor transformation
2023; Elsevier BV; Volume: 33; Issue: 19 Linguagem: Inglês
10.1016/j.cub.2023.08.016
ISSN1879-0445
AutoresCansu Arican, Felix Johannes Schmitt, Wolfgang Rößler, Martin F. Strube‐Bloss, Martin Paul Nawrot,
Tópico(s)Plant Molecular Biology Research
ResumoAnimals form a behavioral decision by evaluating sensory evidence on the background of past experiences and the momentary motivational state. In insects, we still lack understanding of how and at which stage of the recurrent sensory-motor pathway behavioral decisions are formed. The mushroom body (MB), a central brain structure in insects1Strausfeld N.J. Sinakevitch I. Brown S.M. Farris S.M. Ground plan of the insect mushroom body: functional and evolutionary implications.J. Comp. Neurol. 2009; 513: 265-291https://doi.org/10.1002/cne.21948Crossref PubMed Scopus (168) Google Scholar and crustaceans,2Strausfeld N.J. Wolff G.H. Sayre M.E. Mushroom body evolution demonstrates homology and divergence across Pancrustacea.eLife. 2020; 9: 1-46https://doi.org/10.7554/eLife.52411Crossref Scopus (25) Google Scholar,3Harzsch S. Krieger J. Genealogical relationships of mushroom bodies, hemiellipsoid bodies, and their afferent pathways in the brains of Pancrustacea: recent progress and open questions.Arthropod Struct. Dev. 2021; 65: 101100https://doi.org/10.1016/j.asd.2021.101100Crossref Scopus (3) Google Scholar integrates sensory input of different modalities4Li Y. Strausfeld N.J. Multimodal efferent and recurrent neurons in the medial lobes of cockroach mushroom bodies.J. Comp. Neurol. 1999; 409: 647-663https://doi.org/10.1002/(SICI)1096-9861(19990712)409:4 3.0.CO;2-3Crossref PubMed Scopus (116) Google Scholar,5Yagi R. Mabuchi Y. Mizunami M. Tanaka N.K. Convergence of multimodal sensory pathways to the mushroom body calyx in Drosophila melanogaster.Sci. Rep. 2016; 6: 29481https://doi.org/10.1038/srep29481Crossref PubMed Scopus (51) Google Scholar,6Strube-Bloss M.F. Rössler W. Multimodal integration and stimulus categorization in putative mushroom body output neurons of the honeybee.R. Soc. Open Sci. 2018; 5: 171785https://doi.org/10.1098/rsos.171785Crossref PubMed Scopus (33) Google Scholar with the internal state, the behavioral state, and external sensory context7Cohn R. Morantte I. Ruta V. Coordinated and compartmentalized neuromodulation shapes sensory processing in Drosophila.Cell. 2015; 163: 1742-1755https://doi.org/10.1016/j.cell.2015.11.019Abstract Full Text Full Text PDF PubMed Scopus (226) Google Scholar,8Tsao C.-H. Chen C.-C. Lin C.-H. Yang H.-Y. Lin S. Drosophila mushroom bodies integrate hunger and satiety signals to control innate food-seeking behavior.eLife. 2018; 7: 1-35https://doi.org/10.7554/eLife.35264Crossref Scopus (81) Google Scholar,9Sayin S. De Backer J.-F. Siju K.P. Wosniack M.E. Lewis L.P. Frisch L.-M. Gansen B. Schlegel P. Edmondson-Stait A. Sharifi N. et al.A neural circuit arbitrates between persistence and withdrawal in hungry Drosophila.Neuron. 2019; 104: 544-558.e6https://doi.org/10.1016/j.neuron.2019.07.028Abstract Full Text Full Text PDF PubMed Scopus (47) Google Scholar,10Devineni A.V. Scaplen K.M. Neural circuits underlying behavioral flexibility: insights from Drosophila.Front. Behav. Neurosci. 2022; 15: 1-24https://doi.org/10.3389/fnbeh.2021.821680Crossref Scopus (11) Google Scholar through a large number of recurrent, mostly neuromodulatory inputs,11Landayan D. Feldman D.S. Wolf F.W. Satiation state-dependent dopaminergic control of foraging in Drosophila.Sci. Rep. 2018; 8: 5777https://doi.org/10.1038/s41598-018-24217-1Crossref PubMed Scopus (29) Google Scholar,12Aso Y. Herb A. Ogueta M. Siwanowicz I. Templier T. Friedrich A.B. Ito K. Scholz H. Tanimoto H. Three dopamine pathways induce aversive odor memories with different stability.PLoS Genet. 2012; 8: e1002768https://doi.org/10.1371/journal.pgen.1002768Crossref PubMed Scopus (175) Google Scholar implicating a functional role for MBs in state-dependent sensory-motor transformation.13Okada R. Ikeda J. Mizunami M. Sensory responses and movement-related activities in extrinsic neurons of the cockroach mushroom bodies.J. Comp. Physiol. A. 1999; 185: 115-129https://doi.org/10.1007/s003590050371Crossref Scopus (62) Google Scholar,14Aimon S. Cheng K.Y. Gjorgjieva J. Grunwald Kadow I.C. Global change in brain state during spontaneous and forced walk in Drosophila is composed of combined activity patterns of different neuron classes.eLife. 2023; 12: e85202https://doi.org/10.7554/eLife.85202Crossref Scopus (0) Google Scholar A number of classical conditioning studies in honeybees15Strube-Bloss M.F. Nawrot M.P. Menzel R. Mushroom body output neurons encode odor reward associations.J. Neurosci. 2011; 31: 3129-3140https://doi.org/10.1523/JNEUROSCI.2583-10.2011Crossref PubMed Scopus (109) Google Scholar,16Strube-Bloss M.F. Nawrot M.P. Menzel R. Neural correlates of side-specific odour memory in mushroom body output neurons.Proc. Biol. Sci. 2016; 283: 20161270https://doi.org/10.1098/rspb.2016.1270Crossref Scopus (20) Google Scholar and fruit flies17Aso Y. Sitaraman D. Ichinose T. Kaun K.R. Vogt K. Belliart-Guérin G. Plaçais P.-Y. Robie A.A. Yamagata N. Schnaitmann C. et al.Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila.eLife. 2014; 3: e04580https://doi.org/10.7554/eLife.04580Crossref PubMed Scopus (399) Google Scholar,18Owald D. Felsenberg J. Talbot C.B. Das G. Perisse E. Huetteroth W. Waddell S. Activity of defined mushroom body output neurons underlies learned olfactory behavior in Drosophila.Neuron. 2015; 86: 417-427https://doi.org/10.1016/j.neuron.2015.03.025Abstract Full Text Full Text PDF PubMed Scopus (185) Google Scholar,19Felsenberg J. Jacob P.F. Walker T. Barnstedt O. Edmondson-Stait A.J. Pleijzier M.W. Otto N. Schlegel P. Sharifi N. Perisse E. et al.Integration of parallel opposing memories underlies memory extinction.Cell. 2018; 175: 709-722.e15https://doi.org/10.1016/j.cell.2018.08.021Abstract Full Text Full Text PDF PubMed Scopus (102) Google Scholar have provided accumulated evidence that at its output, the MB encodes the valence of a sensory stimulus with respect to its behavioral relevance. Recent work has extended this notion of valence encoding to the context of innate behaviors.8Tsao C.-H. Chen C.-C. Lin C.-H. Yang H.-Y. Lin S. Drosophila mushroom bodies integrate hunger and satiety signals to control innate food-seeking behavior.eLife. 2018; 7: 1-35https://doi.org/10.7554/eLife.35264Crossref Scopus (81) Google Scholar,20Siju K.P. Štih V. Aimon S. Gjorgjieva J. Portugues R. Grunwald Kadow I.C. Valence and state-dependent population coding in dopaminergic neurons in the fly mushroom body.Curr. Biol. 2020; 30: 2104-2115.e4https://doi.org/10.1016/j.cub.2020.04.037Abstract Full Text Full Text PDF PubMed Scopus (23) Google Scholar,21Lewis L.P.C. Siju K.P. Aso Y. Friedrich A.B. Bulteel A.J.B. Rubin G.M. Grunwald Kadow I.C. A higher brain circuit for immediate integration of conflicting sensory information in Drosophila.Curr. Biol. 2015; 25: 2203-2214https://doi.org/10.1016/j.cub.2015.07.015Abstract Full Text Full Text PDF PubMed Scopus (92) Google Scholar,22Bräcker L.B. Siju K.P. Varela N. Aso Y. Zhang M. Hein I. Vasconcelos M.L. Grunwald Kadow I.C. Essential role of the mushroom body in context-dependent CO2 avoidance in Drosophila.Curr. Biol. 2013; 23: 1228-1234https://doi.org/10.1016/j.cub.2013.05.029Abstract Full Text Full Text PDF PubMed Scopus (68) Google Scholar Here, we co-analyzed a defined feeding behavior and simultaneous extracellular single-unit recordings from MB output neurons (MBONs) in the cockroach in response to timed sensory stimulation with odors. We show that clear neuronal responses occurred almost exclusively during behaviorally responded trials. Early MBON responses to the sensory stimulus preceded the feeding behavior and predicted its occurrence or non-occurrence from the single-trial population activity. Our results therefore suggest that at its output, the MB does not merely encode sensory stimulus valence. We hypothesize instead that the MB output represents an integrated signal of internal state, momentary environmental conditions, and experience-dependent memory to encode a behavioral decision.
Referência(s)