Surveillance, prevention and control of West Nile virus and Usutu virus infections in the EU/EEA
2023; European Food Safety Authority; Volume: 20; Issue: 9 Linguagem: Inglês
10.2903/sp.efsa.2023.en-8242
ISSN2397-8325
Tópico(s)Insect symbiosis and bacterial influences
ResumoEFSA Supporting PublicationsVolume 20, Issue 9 8242E Technical reportOpen Access Surveillance, prevention and control of West Nile virus and Usutu virus infections in the EU/EEA First published: 15 September 2023 https://doi.org/10.2903/sp.efsa.2023.EN-8242AboutPDF ToolsExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract This technical report provides an overview of the epidemiological situation of West Nile virus (WNV) and Usutu virus (USUV) and describes the diagnostic, surveillance, prevention and control practices applied in EU/EEA countries. Both WNV and USUV are mosquito-borne flaviviruses that can cause disease in human and animal hosts and are endemic in several EU/EEA countries. This study applied the ‘One Health’ approach by involving experts from the public health, animal health and substances of human origin (SoHO) sectors. Information was collected in 2021 and 2022 through a questionnaire survey, a literature review and an expert meeting. Between 2012 and 2021, 16 EU/EEA countries reported WNV infections in both humans and animals. A total of 3 632 autochthonous cases of WNV infections in humans were reported. In animal hosts, WNV infections were predominantly detected in horses and different bird species. It was also detected in at least nine mosquito species in 13 countries. Fifteen countries reported USUV infections in animal hosts (predominantly birds), eight in humans and eight in mosquitoes. A total of 104 human cases of USUV infections were reported, with neurological manifestations in 11 cases. The laboratory diagnostic capabilities and practices to detect WNV and USUV infections both in humans and in animals are described in this report, as well as the surveillance methods and systems in place in different EU/EEA countries. The public health prevention and control measures were focused on the SoHO safety aspects of WNV infections. The countries applied diverse mosquito control strategies and practices, depending on the public health impact of WNV infections in the country/area, national legislation and resources. The study describes the impact of the two virus infections for the different sectors and emphasises the importance of the ‘One Health’ approach to surveillance, preparedness and control activities in the EU/EEA. References 1Suthar MS, Diamond MS, Gale M, Jr. West Nile virus infection and immunity. Nat Rev Microbiol. 2013 Feb; 11(2): 115-28. Available at: https://www.ncbi.nlm.nih.gov/pubmed/23321534 2Wang H, Abbo SR, Visser TM, Westenberg M, Geertsema C, Fros JJ, et al. Competition between Usutu virus and West Nile virus during simultaneous and sequential infection of Culex pipiens mosquitoes. Emerg Microbes Infect. 2020 Dec; 9(1): 2642-52. Available at: https://www.ncbi.nlm.nih.gov/pubmed/33215969 3Smithburn K, Hughes T, Burke A, Paul J. A Neurotropic Virus Isolated from the Blood of a Native of Uganda. American Journal of Tropical Medicine. 1940; S1-20(4): 471-92. Available at: https://www.ajtmh.org/view/journals/tpmd/s1-20/4/article-p471.xml 4Rizzoli A, Jimenez-Clavero MA, Barzon L, Cordioli P, Figuerola J, Koraka P, et al. The challenge of West Nile virus in Europe: knowledge gaps and research priorities. Euro Surveill. 2015 May 21; 20(20): 21135-. Available at: https://www.ncbi.nlm.nih.gov/pubmed/26027485 5Zeller HG, Schuffenecker I. West Nile virus: an overview of its spread in Europe and the Mediterranean basin in contrast to its spread in the Americas. Eur J Clin Microbiol Infect Dis. 2004 Mar; 23(3): 147-56. Available at: https://www.ncbi.nlm.nih.gov/pubmed/14986160 6Bakonyi T, Ivanics E, Erdelyi K, Ursu K, Ferenczi E, Weissenbock H, et al. Lineage 1 and 2 strains of encephalitic West Nile virus, central Europe. Emerg Infect Dis. 2006 Apr; 12(4): 618-23. Available at: https://www.ncbi.nlm.nih.gov/pubmed/16704810 7Hernandez-Triana LM, Jeffries CL, Mansfield KL, Carnell G, Fooks AR, Johnson N. Emergence of west nile virus lineage 2 in europe: a review on the introduction and spread of a mosquito-borne disease. Front Public Health. 2014; 2(DEC): 271. Available at: https://www.ncbi.nlm.nih.gov/pubmed/25538937 8Bondre VP, Jadi RS, Mishra AC, Yergolkar PN, Arankalle VA. West Nile virus isolates from India: evidence for a distinct genetic lineage. J Gen Virol. 2007 Mar; 88(Pt 3): 875-84. Available at: https://www.ncbi.nlm.nih.gov/pubmed/17325360 9Coia G, Parker MD, Speight G, Byrne ME, Westaway EG. Nucleotide and complete amino acid sequences of Kunjin virus: definitive gene order and characteristics of the virus-specified proteins. J Gen Virol. 1988 Jan; 69 ( Pt 1)(1): 1-21. Available at: https://www.ncbi.nlm.nih.gov/pubmed/2826659 10Bakonyi T, Hubalek Z, Rudolf I, Nowotny N. Novel flavivirus or new lineage of West Nile virus, central Europe. Emerg Infect Dis. 2005 Feb; 11(2): 225-31. Available at: https://www.ncbi.nlm.nih.gov/pubmed/15752439 11Lvov DK, Butenko AM, Gromashevsky VL, Kovtunov AI, Prilipov AG, Kinney R, et al. West Nile virus and other zoonotic viruses in Russia: examples of emerging-reemerging situations. Vienna: Springer; 2004. 12Vazquez A, Sanchez-Seco MP, Ruiz S, Molero F, Hernandez L, Moreno J, et al. Putative new lineage of west nile virus, Spain. Emerg Infect Dis. 2010 Mar; 16(3): 549-52. Available at: https://www.ncbi.nlm.nih.gov/pubmed/20202444 13Pachler K, Lebl K, Berer D, Rudolf I, Hubalek Z, Nowotny N. Putative new West Nile virus lineage in Uranotaenia unguiculata mosquitoes, Austria, 2013. Emerg Infect Dis. 2014 Dec; 20(12): 2119-22. Available at: https://www.ncbi.nlm.nih.gov/pubmed/25418009 14McIntosh B. Usutu (SA Ar 1776), nouvel arbovirus du groupe B. Int Cat Arboviruses. 1985; 3: 1059-60. 15Bakran-Lebl K, Camp JV, Kolodziejek J, Weidinger P, Hufnagl P, Cabal Rosel A, et al. Diversity of West Nile and Usutu virus strains in mosquitoes at an international airport in Austria. Transbound Emerg Dis. 2022 Jul; 69(4): 2096-109. Available at: https://www.ncbi.nlm.nih.gov/pubmed/34169666 16Nikolay B, Diallo M, Boye CS, Sall AA. Usutu virus in Africa. Vector Borne Zoonotic Dis. 2011 Nov; 11(11): 1417-23. Available at: https://www.ncbi.nlm.nih.gov/pubmed/21767160 17Weissenbock H, Bakonyi T, Rossi G, Mani P, Nowotny N. Usutu virus, Italy, 1996. Emerg Infect Dis. 2013 Feb; 19(2): 274-7. Available at: https://www.ncbi.nlm.nih.gov/pubmed/23347844 18Vilibic-Cavlek T, Petrovic T, Savic V, Barbic L, Tabain I, Stevanovic V, et al. Epidemiology of Usutu Virus: The European Scenario. Pathogens. 2020 Aug 26; 9(9):699. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32858963 19Pecorari M, Longo G, Gennari W, Grottola A, Sabbatini A, Tagliazucchi S, et al. First human case of Usutu virus neuroinvasive infection, Italy, August-September 2009. Euro Surveill. 2009 Dec 17; 14(50): 9-10. Available at: https://www.ncbi.nlm.nih.gov/pubmed/20070936 20Cavrini F, Gaibani P, Longo G, Pierro AM, Rossini G, Bonilauri P, et al. Usutu virus infection in a patient who underwent orthotropic liver transplantation, Italy, August-September 2009. Euro Surveill. 2009 Dec 17; 14(50): 19448-. Available at: https://www.ncbi.nlm.nih.gov/pubmed/20070935 21Engel D, Jost H, Wink M, Borstler J, Bosch S, Garigliany MM, et al. Reconstruction of the Evolutionary History and Dispersal of Usutu Virus, a Neglected Emerging Arbovirus in Europe and Africa. mBio. 2016 Feb 2; 7(1): e01938-15. Available at: https://www.ncbi.nlm.nih.gov/pubmed/26838717 22Kuchinsky SC, Hawks SA, Mossel EC, Coutermarsh-Ott S, Duggal NK. Differential pathogenesis of Usutu virus isolates in mice. PLoS Negl Trop Dis. 2020 Oct; 14(10):e0008765. Available at: https://www.ncbi.nlm.nih.gov/pubmed/33044987 23Nanni Costa A, Capobianchi MR, Ippolito G, Palù G, Barzon L, Piccolo G, et al. West Nile virus: the Italian national transplant network reaction to an alert in the north-eastern region, Italy 2011. Euro Surveill. 2011; 16(41): 6-. Available at: https://www.eurosurveillance.org/content/10.2807/ese.16.41.19991-en 24Barzon L, Pacenti M, Sinigaglia A, Berto A, Trevisan M, Palu G. West Nile virus infection in children. Expert Rev Anti Infect Ther. 2015; 13(11): 1373-86. Available at: https://www.ncbi.nlm.nih.gov/pubmed/26325613 25Pacenti M, Sinigaglia A, Franchin E, Pagni S, Lavezzo E, Montarsi F, et al. Human West Nile Virus Lineage 2 Infection: Epidemiological, Clinical, and Virological Findings. Viruses. 2020 Apr 18; 12(4): 1-14. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32325716 26Vahey GM, Mathis S, Martin SW, Gould CV, Staples EJ, Lindsey NP. Morbidity and Mortality Weekly Report West Nile Virus and Other Domestic Nationally Notifiable Arboviral Diseases-United States, 2019. MMWR. 2019; 70(30): 1069-74. Available at: https://www.cdc.gov/ticks/avoid/index.html 27Sejvar JJ. The long-term outcomes of human West Nile virus infection. Clin Infect Dis. 2007 Jun 15; 44(12): 1617-24. Available at: https://www.ncbi.nlm.nih.gov/pubmed/17516407 28Boldescu V, Behnam MAM, Vasilakis N, Klein CD. Broad-spectrum agents for flaviviral infections: dengue, Zika and beyond. Nat Rev Drug Discov. 2017 Aug; 16(8): 565-86. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28473729 29Sinigaglia A, Peta E, Riccetti S, Barzon L. New avenues for therapeutic discovery against West Nile virus. Expert Opin Drug Discov. 2020 Mar; 15(3): 333-48. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32017639 30Santini M, Vilibic-Cavlek T, Barsic B, Barbic L, Savic V, Stevanovic V, et al. First cases of human Usutu virus neuroinvasive infection in Croatia, August-September 2013: clinical and laboratory features. J Neurovirol. 2015 Feb; 21(1): 92-7. Available at: https://www.ncbi.nlm.nih.gov/pubmed/25361698 31Grottola A, Marcacci M, Tagliazucchi S, Gennari W, Di Gennaro A, Orsini M, et al. Usutu virus infections in humans: a retrospective analysis in the municipality of Modena, Italy. Clin Microbiol Infect. 2017 Jan; 23(1): 33-7. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27677699 32Simonin Y, Sillam O, Carles MJ, Gutierrez S, Gil P, Constant O, et al. Human Usutu Virus Infection with Atypical Neurologic Presentation, Montpellier, France, 2016. Emerg Infect Dis. 2018 May; 24(5): 875-8. Available at: https://www.ncbi.nlm.nih.gov/pubmed/29664365 33Pacenti M, Sinigaglia A, Martello T, De Rui ME, Franchin E, Pagni S, et al. Clinical and virological findings in patients with Usutu virus infection, northern Italy, 2018. Euro Surveill. 2019 Nov; 24(47): 1-10. Available at: https://www.ncbi.nlm.nih.gov/pubmed/31771697 34Erdelyi K, Ursu K, Ferenczi E, Szeredi L, Ratz F, Skare J, et al. Clinical and pathologic features of lineage 2 West Nile virus infections in birds of prey in Hungary. Vector Borne Zoonotic Dis. 2007 Summer; 7(2): 181-8. Available at: https://www.ncbi.nlm.nih.gov/pubmed/17627436 35Durand B, Tran A, Balanca G, Chevalier V. Geographic variations of the bird-borne structural risk of West Nile virus circulation in Europe. PLoS One. 2017; 12(10):e0185962. Available at: https://www.ncbi.nlm.nih.gov/pubmed/29023472 36Angenvoort J, Brault AC, Bowen RA, Groschup MH. West Nile viral infection of equids. Vet Microbiol. 2013 Nov 29; 167(1-2): 168-80. Available at: https://www.ncbi.nlm.nih.gov/pubmed/24035480 37Constant O, Bollore K, Cle M, Barthelemy J, Foulongne V, Chenet B, et al. Evidence of Exposure to USUV and WNV in Zoo Animals in France. Pathogens. 2020 Nov 30; 9(12): 1005-. Available at: https://www.ncbi.nlm.nih.gov/pubmed/33266071 38Buchebner N, Zenker W, Wenker C, Steinmetz HW, Sos E, Lussy H, et al. Low Usutu virus seroprevalence in four zoological gardens in central Europe. BMC Vet Res. 2013 Aug 6; 9(1): 153. Available at: https://www.ncbi.nlm.nih.gov/pubmed/23919825 39Cadar D, Becker N, Campos Rde M, Borstler J, Jost H, Schmidt-Chanasit J. Usutu virus in bats, Germany, 2013. Emerg Infect Dis. 2014 Oct; 20(10): 1771-3. Available at: https://www.ncbi.nlm.nih.gov/pubmed/25271769 40Maquart M, Dahmani M, Marie JL, Gravier P, Leparc-Goffart I, Davoust B. First Serological Evidence of West Nile Virus in Horses and Dogs from Corsica Island, France. Vector Borne Zoonotic Dis. 2017 Apr; 17(4): 275-7. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28075236 41Bournez L UGFEBJMBFJESMLFJ-CMAMSLS. Exposure of Wild Ungulates to the Usutu and Tick-Borne Encephalitis Viruses in France in 2009-2014: Evidence of Undetected Flavivirus Circulation a Decade Agoe. Viruses. 2019; 12(1): 10-. Available at: https://www.mdpi.com/1999-4915/12/1/10 42Montagnaro S, Piantedosi D, Ciarcia R, Loponte R, Veneziano V, Fusco G, et al. Serological Evidence of Mosquito-Borne Flaviviruses Circulation in Hunting Dogs in Campania Region, Italy. Vector Borne Zoonotic Dis. 2019 Feb; 19(2): 142-7. Available at: https://www.ncbi.nlm.nih.gov/pubmed/30160624 43Caballero-Gomez J, Cano-Terriza D, Lecollinet S, Carbonell MD, Martinez-Valverde R, Martinez-Nevado E, et al. Evidence of exposure to zoonotic flaviviruses in zoo mammals in Spain and their potential role as sentinel species. Vet Microbiol. 2020 Aug; 247(April):108763. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32768215 44Knap N, Korva M, Ivovic V, Kalan K, Jelovsek M, Sagadin M, et al. West Nile Virus in Slovenia. Viruses. 2020 Jul 3; 12(7): 720. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32635155 45Vogels CB, Goertz GP, Pijlman GP, Koenraadt CJ. Vector competence of European mosquitoes for West Nile virus. Emerg Microbes Infect. 2017 Nov 8; 6(11):e96. Available at: https://www.ncbi.nlm.nih.gov/pubmed/29116220 46Jansen S, Heitmann A, Luhken R, Leggewie M, Helms M, Badusche M, et al. Culex torrentium: A Potent Vector for the Transmission of West Nile Virus in Central Europe. Viruses. 2019 May 29; 11(6): 492-. Available at: https://www.ncbi.nlm.nih.gov/pubmed/31146418 47Veronesi E, Paslaru A, Silaghi C, Tobler K, Glavinic U, Torgerson P, et al. Experimental evaluation of infection, dissemination, and transmission rates for two West Nile virus strains in European Aedes japonicus under a fluctuating temperature regime. Parasitol Res. 2018 Jun; 117(6): 1925-32. Available at: https://www.ncbi.nlm.nih.gov/pubmed/29705877 48Vogels CBF, Goertz GP, Pijlman GP, Koenraadt CJM. Vector competence of northern and southern European Culex pipiens pipiens mosquitoes for West Nile virus across a gradient of temperatures. Med Vet Entomol. 2017 Dec; 31(4): 358-64. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28752627 49Reisen WK. The contrasting bionomics of Culex mosquitoes in western North America. J Am Mosq Control Assoc. 2012 Dec; 28(4 Suppl): 82-91. Available at: https://www.ncbi.nlm.nih.gov/pubmed/23401947 50 European Centre for disease Prevention and Control (ECDC). Culex pipiens - Factsheet for experts. Stockholm: ECDC; 2020. Available at: https://www.ecdc.europa.eu/en/all-topics-z/disease-vectors/facts/mosquito-factsheets/culex-pipiens-factsheet-experts 51Klobucar A, Savic V, Curman Posavec M, Petrinic S, Kuhar U, Toplak I, et al. Screening of Mosquitoes for West Nile Virus and Usutu Virus in Croatia, 2015-2020. Trop Med Infect Dis. 2021 Apr 2; 6(2): 45. Available at: https://www.ncbi.nlm.nih.gov/pubmed/33918386 52Holicki CM, Scheuch DE, Ziegler U, Lettow J, Kampen H, Werner D, et al. German Culex pipiens biotype molestus and Culex torrentium are vector-competent for Usutu virus. Parasit Vectors. 2020 Dec 30; 13(1): 625. Available at: https://www.ncbi.nlm.nih.gov/pubmed/33380339 53Cook CL, Huang YS, Lyons AC, Alto BW, Unlu I, Higgs S, et al. North American Culex pipiens and Culex quinquefasciatus are competent vectors for Usutu virus. PLoS Negl Trop Dis. 2018 Aug; 12(8):e0006732. Available at: https://www.ncbi.nlm.nih.gov/pubmed/30118480 54Puggioli A, Bonilauri P, Calzolari M, Lelli D, Carrieri M, Urbanelli S, et al. Does Aedes albopictus (Diptera: Culicidae) play any role in Usutu virus transmission in Northern Italy? Experimental oral infection and field evidences. Acta Trop. 2017 Aug; 172: 192-6. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28495404 55Brien JD, Lazear HM, Diamond MS. Propagation, quantification, detection, and storage of West Nile virus. Curr Protoc Microbiol. 2013 Nov 5; 31(1): 15D 3 1-D 3 8. Available at: https://www.ncbi.nlm.nih.gov/pubmed/24510289 56Busch MP, Kleinman SH, Tobler LH, Kamel HT, Norris PJ, Walsh I, et al. Virus and antibody dynamics in acute west nile virus infection. J Infect Dis. 2008 Oct 1; 198(7): 984-93. Available at: https://www.ncbi.nlm.nih.gov/pubmed/18729783 57Pisani G, Pupella S, Cristiano K, Marino F, Simeoni M, Luciani F, et al. Detection of West Nile virus RNA (lineages 1 and 2) in an external quality assessment programme for laboratories screening blood and blood components for West Nile virus by nucleic acid amplification testing. Blood Transfus. 2012 Oct; 10(4): 515-20. Available at: https://www.ncbi.nlm.nih.gov/pubmed/23117401 58Chaintoutis SC, Papadopoulou E, Melidou A, Papa A, Dovas CI. A PCR-based NGS protocol for whole genome sequencing of West Nile virus lineage 2 directly from biological specimens. Mol Cell Probes. 2019 Aug; 46:101412. Available at: https://www.ncbi.nlm.nih.gov/pubmed/31201852 59Wollants E, Smolders D, Naesens R, Bruynseels P, Lagrou K, Matthijnssens J, et al. Use of Next-Generation Sequencing for Diagnosis of West Nile Virus Infection in Patient Returning to Belgium from Hungary. Emerg Infect Dis. 2018 Dec; 24(12): 2380-2. Available at: https://www.ncbi.nlm.nih.gov/pubmed/30457549 60Wilson MR, Sample HA, Zorn KC, Arevalo S, Yu G, Neuhaus J, et al. Clinical Metagenomic Sequencing for Diagnosis of Meningitis and Encephalitis. N Engl J Med. 2019 Jun 13; 380(24): 2327-40. Available at: https://www.ncbi.nlm.nih.gov/pubmed/31189036 61Prince HE, Tobler LH, Lape-Nixon M, Foster GA, Stramer SL, Busch MP. Development and persistence of West Nile virus-specific immunoglobulin M (IgM), IgA, and IgG in viremic blood donors. J Clin Microbiol. 2005 Sep; 43(9): 4316-20. Available at: https://www.ncbi.nlm.nih.gov/pubmed/16145071 62Vanichanan J, Salazar L, Wootton SH, Aguilera E, Garcia MN, Murray KO, et al. Use of Testing for West Nile Virus and Other Arboviruses. Emerg Infect Dis. 2016 Sep; 22(9): 1587-93. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27537988 63De Filette M, Ulbert S, Diamond M, Sanders NN. Recent progress in West Nile virus diagnosis and vaccination. Vet Res. 2012 Mar 1; 43(1): 16. Available at: https://www.ncbi.nlm.nih.gov/pubmed/22380523 64Sinigaglia A, Pacenti M, Martello T, Pagni S, Franchin E, Barzon L. West Nile virus infection in individuals with pre-existing Usutu virus immunity, northern Italy, 2018. Euro Surveill. 2019 May; 24(21): 1-6. Available at: https://www.ncbi.nlm.nih.gov/pubmed/31138361 65Cavrini F, Della Pepa ME, Gaibani P, Pierro AM, Rossini G, Landini MP, et al. A rapid and specific real-time RT-PCR assay to identify Usutu virus in human plasma, serum, and cerebrospinal fluid. J Clin Virol. 2011 Mar; 50(3): 221-3. Available at: https://www.ncbi.nlm.nih.gov/pubmed/21156352 66Del Amo J, Sotelo E, Fernandez-Pinero J, Gallardo C, Llorente F, Aguero M, et al. A novel quantitative multiplex real-time RT-PCR for the simultaneous detection and differentiation of West Nile virus lineages 1 and 2, and of Usutu virus. J Virol Methods. 2013 May; 189(2): 321-7. Available at: https://www.ncbi.nlm.nih.gov/pubmed/23499258 67Zaaijer HL, Slot E, Molier M, Reusken C, Koppelman M. Usutu virus infection in Dutch blood donors. Transfusion. 2019 Sep; 59(9): 2931-7. Available at: https://www.ncbi.nlm.nih.gov/pubmed/31270821 68Oude Munnink BB, Kik M, de Bruijn ND, Kohl R, van der Linden A, Reusken C, et al. Towards high quality real-time whole genome sequencing during outbreaks using Usutu virus as example. Infect Genet Evol. 2019 Sep; 73(March): 49-54. Available at: https://www.ncbi.nlm.nih.gov/pubmed/31014969 69Percivalle, Cassaniti, Sarasini, Rovida, Adzasehoun, Colombini, et al. West Nile or Usutu Virus? A Three-Year Follow-Up of Humoral and Cellular Response in a Group of Asymptomatic Blood Donors. Viruses. 2020; 12(2): 157. Available at: https://www.mdpi.com/1999-4915/12/2/157 70Berneck BS, Rockstroh A, Barzon L, Sinigaglia A, Vocale C, Landini MP, et al. Serological differentiation of West Nile virus- and Usutu virus-induced antibodies by envelope proteins with modified cross-reactive epitopes. Transbound Emerg Dis. 2022 Sep; 69(5): 2779-87. Available at: https://www.ncbi.nlm.nih.gov/pubmed/34919790 71Joo K, Bakonyi T, Szenci O, Sardi S, Ferenczi E, Barna M, et al. Comparison of assays for the detection of West Nile virus antibodies in equine serum after natural infection or vaccination. Vet Immunol Immunopathol. 2017 Jan; 183: 1-6. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28063471 72Bakonyi T, Ferenczi E, Erdelyi K, Kutasi O, Csorgo T, Seidel B, et al. Explosive spread of a neuroinvasive lineage 2 West Nile virus in Central Europe, 2008/2009. Vet Microbiol. 2013 Jul 26; 165(1-2): 61-70. Available at: https://www.ncbi.nlm.nih.gov/pubmed/23570864 73Manarolla G, Bakonyi T, Gallazzi D, Crosta L, Weissenbock H, Dorrestein GM, et al. Usutu virus in wild birds in northern Italy. Vet Microbiol. 2010 Feb 24; 141(1-2): 159-63. Available at: https://www.ncbi.nlm.nih.gov/pubmed/19720475 74Wipf NC, Guidi V, Tonolla M, Ruinelli M, Muller P, Engler O. Evaluation of honey-baited FTA cards in combination with different mosquito traps in an area of low arbovirus prevalence. Parasit Vectors. 2019 Nov 21; 12(1): 554. Available at: https://www.ncbi.nlm.nih.gov/pubmed/31753035 75Savini G, Capelli G, Monaco F, Polci A, Russo F, Di Gennaro A, et al. Evidence of West Nile virus lineage 2 circulation in Northern Italy. Vet Microbiol. 2012 Aug 17; 158(3-4): 267-73. Available at: https://www.ncbi.nlm.nih.gov/pubmed/22406344 76Scaramozzino N, Crance JM, Jouan A, DeBriel DA, Stoll F, Garin D. Comparison of flavivirus universal primer pairs and development of a rapid, highly sensitive heminested reverse transcription-PCR assay for detection of flaviviruses targeted to a conserved region of the NS5 gene sequences. J Clin Microbiol. 2001 May; 39(5): 1922-7. Available at: https://www.ncbi.nlm.nih.gov/pubmed/11326014 77Walker T, Jeffries CL, Mansfield KL, Johnson N. Mosquito cell lines: history, isolation, availability and application to assess the threat of arboviral transmission in the United Kingdom. Parasit Vectors. 2014 Aug 20; 7(1): 382. Available at: https://www.ncbi.nlm.nih.gov/pubmed/25141888 78 European Commission (EC). Commission Implementing Decision (EU) 2018/945 of 22 June 2018 on the communicable diseases and related special health issues to be covered by epidemiological surveillance as well as relevant case definitions. Brussels: EC; 2018. Available at: http://data.europa.eu/eli/dec_impl/2018/945/oj 79 World Organisation for Animal Health (WOAH). Terrestrial Code: West Nile fever, Chapter 8.21. Paris: WOAH. Available at: https://www.woah.org/en/what-we-do/standards/codes-and-manuals/terrestrial-code-online-access/?id=169&L=1&htmfile=chapitre_wnf.htm 80 European Commission (EC). Commission Implementing Regulation (EU) 2018/1882 of 3 December 2018 on the application of certain disease prevention and control rules to categories of listed diseases and establishing a list of species and groups of species posing a considerable risk for the spread of those listed diseases. Brussels: EC; 2018. Available at: https://eur-lex.europa.eu/eli/reg_impl/2018/1882/oj 81European Food Safety Authority (EFSA) and European Centre for disease Prevention and Control (ECDC). The European Union One Health 2021 Zoonoses Report. EFSA Journal. 2022 Available at: https://efsa.onlinelibrary.wiley.com/doi/full/10.2903/j.efsa.2022.7666 82 European Centre for disease Prevention and Control (ECDC). Organisation of vector surveillance and control in Europe. Stockholm: ECDC; 2021. Available at: https://www.ecdc.europa.eu/sites/default/files/documents/Organisation-vector-surveillance-control-Europe_0.pdf 84 European Commission (EC). Directive 2002/98/EC of the European Parliament and of the Council of 27 January 2003 setting standards of quality and safety for the collection, testing, processing, storage and distribution of human blood and blood components and amending Directive 2001. Luxembourg: European Parliament and Council of the European Union; 2003. Available at: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32002L0098 85 The European Parliament and the Council of the European Union. Directive 2004/23/EC of the European Parliament and of the Council of 31 March 2004 on setting standards of quality and safety for the donation, procurement, testing, processing, preservation, storage and distribution of human tissues and cells. Luxembourg: European Parliament and Council of the European Union; 2004. Available at: http://data.europa.eu/eli/dir/2004/23/oj 86 European Commission (EC). Directive 2010/45/EU of the European Parliament and of the Council of 7 July 2010 on standards of quality and safety of human organs intended for transplantation. Strasbourg: European Parliament and Council of the European Union; 2010. Available at: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32010L0053 87 European Commission (EC). Commission Directive 2004/33/EC of 22 March 2004 implementing Directive 2002/98/EC of the European Parliament and of the Council as regards certain technical requirements for blood and blood components. Brussels: EC; 2004. Available at: http://data.europa.eu/eli/dir/2004/33/oj 88 European Commission (EC). Commission Directive 2014/110/EU of 17 December 2014 amending Directive 2004/33/EC as regards temporary deferral criteria for donors of allogeneic blood donations. Brussels: EC; 2014. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32014L0110 89 European Commission (EC). West Nile Virus and Blood Safety: Introduction to a Preparedness Plan in Europe. Brussels: EC; 2012. Available at: https://health.ec.europa.eu/blood-tissues-cells-and-organs/overview_en 90Cavalleri JV, Korbacska-Kutasi O, Leblond A, Paillot R, Pusterla N, Steinmann E, et al. European College of Equine Internal Medicine consensus statement on equine flaviviridae infections in Europe. J Vet Intern Med. 2022 Nov; 36(6): 1858-71. Available at: https://www.ncbi.nlm.nih.gov/pubmed/36367340 91Vaasjo E, Black SR, Pastor A, Whiteside DP. Assessing the Humoral Response to and Safety of a Commercially Available Equine West Nile Virus Vaccine in a Zoo-Based Conservation Breeding Population of Endangered Greater Sage-Grouse (Centrocercus Urophasianus). J Zoo Wildl Med. 2021 Jun; 52(2): 732-6. Available at: https://www.ncbi.nlm.nih.gov/pubmed/34130419 92Bergmann F, Fischer D, Fischer L, Maisch H, Risch T, Dreyer S, et al. Vaccination of Zoo Birds against West Nile Virus-A Field Study. Vaccines (Basel). 2023 Mar 14; 11(3) Available at: https://www.ncbi.nlm.nih.gov/pubmed/36992236 93Angenvoort J, Fischer D, Fast C, Ziegler U, Eiden M, de la Fuente JG, et al. Limited efficacy of West Nile virus vaccines in large falcons (Falco spp.). Vet Res. 2014 Apr 7; 45(1): 41. Available at: https://www.ncbi.nlm.nih.gov/pubmed/24708385 94Saiz JC. Animal and Human Vaccines against West Nile Virus. Pathogens. 2020 Dec 21; 9(12) Available at: https://www.ncbi.nlm.nih.gov/pubmed/33371384 95Gould CV, Staples JE, Huang CY, Brault AC, Nett RJ. Combating West Nile Virus Disease - Time to Revisit Vaccination. N Engl J Med. 2023 May 4; 388(18): 1633-6. Available at: https://www.ncbi.nlm.nih.gov/pubmed/37125778 96Sun H, Acharya D, Paul AM, Lai H, He J, Bai F, et al. Antibody-Dependent Enhancement Activity of a Plant-Made Vaccine against West Nile Virus. Vaccines (Basel). 2023 Jan 17; 11(2) Available at: https://www.ncbi.nlm.nih.gov/pubmed/36851075 97Carpio KL, Barrett ADT. Flavivirus NS1 and Its Potential in Vaccine Development. Vaccines (Basel). 2021 Jun 9; 9(6) Available at: https://www.ncbi.nlm.nih.gov/pubmed/34207516 98Martin-Acebes MA, Blazquez AB, Canas-Arranz R, Vazquez-Calvo A, Merino-Ramos T, Escribano-Romero E, et al. A recombinant DNA vaccine protects mice deficient in the alpha/beta interferon receptor against lethal challenge with Usutu virus. Vaccine. 2016 Apr 19; 34(18): 2066-73. Available at: https://www.ncbi.nlm.nih.gov/pubmed/26993334 99 European Centre for disease Prevention and Control (ECDC). Historical data by year - West Nile virus seasonal surveillance. Stockholm: ECDC; 2021. Available at: https://www.ecdc.europa.eu/en/west-nile-fever/surveillance-and-disease-data/historical 100Czupryna P, Niczyporuk J, Samorek-Salamonowicz E, Moniuszko A, Dunaj J, Zajkowska J, et al. Detection of West Nile Virus RNA in patients with meningitis in Podlaskie Province. Przegl Epidemiol. 2014; 68(1):17-20, 109-11. Available at: https://www.ncbi.nlm.nih.gov/pubmed/25004626 101Jablonska J, Popiel M, Bukowska-Osko I, Perlejewski K, Cortes KC, Horban A, et al. No evidence of West Nile virus infection among Polish patients with encephalitis. Cent Eur J Immunol. 2016; 41(4): 383-5. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28450801 102European Food Safety A, European Centre for Disease P, Control. The European Union One Health 2019 Zoonoses Report. EFSA J. 2021 Feb; 19(2):e06406. Available at: https://www.ncbi.nlm.nih.gov/pubmed/33680134 103Niczyporuk JS, Samorek-Salamonowicz E, Lecollinet S, Pancewicz SA, Kozdrun W, Czekaj H. Occurrence of West Nile virus antibodies in wild birds, horses, and humans in Pola
Referência(s)