Predictive Maintenance, Adversarial Autoencoders and Explainability
2023; Springer Science+Business Media; Linguagem: Inglês
10.1007/978-3-031-43430-3_16
ISSN1611-3349
AutoresMiguel Silva, Bruno Veloso, João Gama,
Tópico(s)Risk and Safety Analysis
ResumoThe transition to Industry 4.0 provoked a transformation of industrial manufacturing with a significant leap in automation and intelligent systems. This paradigm shift has brought about a mindset that emphasizes predictive maintenance: detecting future failures when current behaviour of industrial processes and machines is thought to be normal. The constant monitoring of industrial equipment produces massive quantities of data that enables the application of machine learning approaches to this task. This study uses deep learning-based models to build a data-driven predictive maintenance framework for the air production unit (APU), a crucial system for the proper functioning of a Metro do Porto train. This public transport system moves thousands of people every day and train failures lead to delays and loss of trust by clients. Therefore, it is essential not only to detect APU failures before they occur to minimize negative impacts, but also to provide explanations for the failure warnings that can aid in decision-making processes. We propose an autoencoder architecture trained with an adversarial loss, known as the Wasserstein Autoencoder with Generative Adversarial Network (WAE-GAN), designed to detect sensor failures in systems connected to the APU. Our model can detect APU failures up to two hours before they occur, allowing timely intervention of the maintenance teams. We further augment our model with an explainability layer, by providing explanations generated by a rule-based model that focuses on rare events. Results show that our model is able to detect APU failures without any false alarms, fulfilling the requisites of Metro do Porto for early detection of the failures.
Referência(s)