Photomobile Polymer–Piezoelectric Composite for Enhanced Actuation and Energy Generation
2023; American Chemical Society; Volume: 1; Issue: 10 Linguagem: Inglês
10.1021/acsaom.3c00227
ISSN2771-9855
AutoresDomenico Sagnelli, Amalia D’Avino, Massimo Rippa, Ambra Vestri, Valentina Marchesano, Giuseppe Nenna, Fulvia Villani, Gustavo Ardila, Sonia Centi, Fulvio Ratto, Lucia Petti,
Tópico(s)Photochromic and Fluorescence Chemistry
ResumoIn this study, we present an innovative approach to increase the quantum yield and wavelength sensitivity of photomobile polymer (PMP) films based on azobenzene by doping the polymer matrix with noble metal nanoparticles. These doped PMP films showed faster and more significant bending under both UV as well as visible and near-infrared light regardless of whether it was coherent, incoherent, polarized, or unpolarized irradiation, expanding the potential of PMP-based actuators. To illustrate their practical implications, we created a proof-of-concept model of power generation by coupling it to flexible piezoelectric materials under simulated sunlight. This model has been tested under real operating conditions, thus demonstrating the possibility of generating electricity with variable light exposure. Additionally, our synthetic protocol is solvent-free, which is another benefit of environmental relevance. Our research lays the groundwork for the development of sunlight-sensitive devices, such as photomechanical actuators and advanced photovoltaic modules, which may break ground in the thriving field of smart materials. We are confident that the presented findings will contribute to the ongoing discourse in the field and inspire additional advances in renewable energy applications.
Referência(s)