Outro Acesso aberto Revisado por pares

Mining for Bioactive Molecules in Open Databases

2023; Wiley; Linguagem: Inglês

10.1002/9783527830497.ch9

ISSN

1865-0562

Autores

Guillem Macip, Júlia Mestres‐Truyol, Pol Garcia‐Segura, Bryan Saldivar‐Espinoza, Santiago Garcı́a-Vallvé, Gerard Pujadas,

Tópico(s)

Microbial Natural Products and Biosynthesis

Resumo

Chapter 9 Mining for Bioactive Molecules in Open Databases Guillem Macip, Guillem Macip Departament de Bioquímica i Biotecnologia, Carrer Marcel·lí Domingo 1, Universitat Rovira i Virgili, Research group in Cheminformatics & Nutrition, 43007 Tarragona, Catalonia, SpainSearch for more papers by this authorJúlia Mestres-Truyol, Júlia Mestres-Truyol Departament de Bioquímica i Biotecnologia, Carrer Marcel·lí Domingo 1, Universitat Rovira i Virgili, Research group in Cheminformatics & Nutrition, 43007 Tarragona, Catalonia, SpainSearch for more papers by this authorPol Garcia-Segura, Pol Garcia-Segura Departament de Bioquímica i Biotecnologia, Carrer Marcel·lí Domingo 1, Universitat Rovira i Virgili, Research group in Cheminformatics & Nutrition, 43007 Tarragona, Catalonia, SpainSearch for more papers by this authorBryan Saldivar-Espinoza, Bryan Saldivar-Espinoza Departament de Bioquímica i Biotecnologia, Carrer Marcel·lí Domingo 1, Universitat Rovira i Virgili, Research group in Cheminformatics & Nutrition, 43007 Tarragona, Catalonia, SpainSearch for more papers by this authorSantiago Garcia-Vallvé, Santiago Garcia-Vallvé Departament de Bioquímica i Biotecnologia, Carrer Marcel·lí Domingo 1, Universitat Rovira i Virgili, Research group in Cheminformatics & Nutrition, 43007 Tarragona, Catalonia, SpainSearch for more papers by this authorGerard Pujadas, Gerard Pujadas Departament de Bioquímica i Biotecnologia, Carrer Marcel·lí Domingo 1, Universitat Rovira i Virgili, Research group in Cheminformatics & Nutrition, 43007 Tarragona, Catalonia, SpainSearch for more papers by this author Guillem Macip, Guillem Macip Departament de Bioquímica i Biotecnologia, Carrer Marcel·lí Domingo 1, Universitat Rovira i Virgili, Research group in Cheminformatics & Nutrition, 43007 Tarragona, Catalonia, SpainSearch for more papers by this authorJúlia Mestres-Truyol, Júlia Mestres-Truyol Departament de Bioquímica i Biotecnologia, Carrer Marcel·lí Domingo 1, Universitat Rovira i Virgili, Research group in Cheminformatics & Nutrition, 43007 Tarragona, Catalonia, SpainSearch for more papers by this authorPol Garcia-Segura, Pol Garcia-Segura Departament de Bioquímica i Biotecnologia, Carrer Marcel·lí Domingo 1, Universitat Rovira i Virgili, Research group in Cheminformatics & Nutrition, 43007 Tarragona, Catalonia, SpainSearch for more papers by this authorBryan Saldivar-Espinoza, Bryan Saldivar-Espinoza Departament de Bioquímica i Biotecnologia, Carrer Marcel·lí Domingo 1, Universitat Rovira i Virgili, Research group in Cheminformatics & Nutrition, 43007 Tarragona, Catalonia, SpainSearch for more papers by this authorSantiago Garcia-Vallvé, Santiago Garcia-Vallvé Departament de Bioquímica i Biotecnologia, Carrer Marcel·lí Domingo 1, Universitat Rovira i Virgili, Research group in Cheminformatics & Nutrition, 43007 Tarragona, Catalonia, SpainSearch for more papers by this authorGerard Pujadas, Gerard Pujadas Departament de Bioquímica i Biotecnologia, Carrer Marcel·lí Domingo 1, Universitat Rovira i Virgili, Research group in Cheminformatics & Nutrition, 43007 Tarragona, Catalonia, SpainSearch for more papers by this author Book Editor(s):Antoine Daina, Antoine Daina Swiss Institute of Bioinformatics, Unil, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015 SwitzerlandSearch for more papers by this authorMichael Przewosny, Michael Przewosny Borngasse 43, Aachen, 52064 GermanySearch for more papers by this authorVincent Zoete, Vincent Zoete University of Lausanne, Route de la Corniche 9A, Epalinges, 1015 SwitzerlandSearch for more papers by this author First published: 20 October 2023 https://doi.org/10.1002/9783527830497.ch9Book Series:Methods and Principles in Medicinal Chemistry AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary In this chapter we describe the main methods used during a virtual screening (i.e. ADMET and PAINS filtering, protein–ligand docking, pharmacophore search, and shape/electrostatic similarity), determine which open databases are useful during this process (e.g. the Protein Data Bank, the AlphaFold Protein Structure Database, COCONUT, ZINC20, the BindingDB database, PubChem, and DUD-E), and explain how to validate the accuracy of the bioactivity predictions that are obtained. References Giri , A.K. and Ianevski , A. ( 2022 ). High-throughput screening for drug discovery targeting the cancer cell-microenvironment interactions in hematological cancers . Expert Opinion on Drug Discovery 17 : 181 – 190 . https://doi.org/10.1080/17460441.2022.1991306 . Xu , T. , Zheng , W. , and Huang , R. ( 2021 ). High-throughput screening assays for SARS-CoV-2 drug development: Current status and future directions . Drug Discovery Today 26 : 2439 – 2444 . https://doi.org/10.1016/J.DRUDIS.2021.05.012 . Gimeno , A. ; Ojeda-Montes , M.J. ; Tomás-Hernández , S. ; Cereto-Massagué , A. ; Beltrán-Debón , R. ; Mulero , M. ; Pujadas , G. ; Garcia-Vallvé , S. The light and dark sides of virtual screening: what is there to know? International Journal of Molecular Sciences 2019 , 20 , 1375 . https://doi.org/10.3390/ijms20061375 . da Silva Rocha , S.F.L. , Olanda , C.G. , Fokoue , H.H. , and Sant'Anna , C.M.R. ( 2019 ). Virtual screening techniques in drug discovery: review and recent applications . Current Topics in Medicinal Chemistry 19 : 1751 – 1767 . https://doi.org/10.2174/1568026619666190816101948 . Sala , E. , Guasch , L. , Iwaszkiewicz , J. et al. ( 2011 ). Identification of human IKK-2 inhibitors of natural origin (Part I): modeling of the IKK-2 kinase domain, virtual screening and activity assays . PLoS One 6 : e16903 . https://doi.org/10.1371/journal.pone.0016903 . Guasch , L. , Ojeda , M.J. , González-Abuín , N. et al. ( 2012 ). Identification of novel human dipeptidyl peptidase-IV inhibitors of natural origin (part I): virtual screening and activity assays . PLoS One 7 : e44971 . https://doi.org/10.1371/journal.pone.0044971 . Guasch , L. , Sala , E. , Castell-Auví , A. et al. ( 2012 ). Identification of PPARgamma partial agonists of natural origin (I): development of a virtual screening Procedure and in vitro validation . PLoS One 7 : e50816 . https://doi.org/10.1371/journal.pone.0050816 . Gimeno , A. , Mestres-Truyol , J. , Ojeda-Montes , M.J. et al. ( 2020 ). Prediction of novel inhibitors of the main protease (M-pro) of SARS-CoV-2 through consensus docking and drug reposition . International Journal of Molecular Sciences 21 : 1 – 30 . https://doi.org/10.3390/ijms21113793 . Ibrahim , I.M. , Elfiky , A.A. , Fathy , M.M. et al. ( 2022 ). Targeting SARS-CoV-2 endoribonuclease: a structure-based virtual screening supported by in vitro analysis . Scientific Reports 12 : 13337 . https://doi.org/10.1038/S41598-022-17573-6 . Ojeda-Montes , M.J. , Casanova-Martí , À. , Gimeno , A. et al. ( 2019 ). Mining large databases to find new leads with low similarity to known actives: application to find new DPP-IV inhibitors . Future Medicinal Chemistry 11 : 1387 – 1401 . https://doi.org/10.4155/fmc-2018-0597 . Gimeno , A. , Cuffaro , D. , Nuti , E. et al. ( 2021 ). Identificat ion of broad-spectrum MMP inhibitors by virtual screening . Molecules 26 : https://doi.org/10.3390/molecules26154553 . Gimeno , A. , Ardid-Ruiz , A. , Ojeda-Montes , M.J. et al. ( 2018 ). Combined ligand- and receptor-based virtual screening methodology to identify structurally diverse protein tyrosine phosphatase 1B inhibitors . ChemMedChem 13 : 1939 – 1948 . https://doi.org/10.1002/cmdc.201800267 . Sala , E. , Guasch , L. , Iwaszkiewicz , J. et al. ( 2011 ). Identification of human IKK-2 inhibitors of natural origin (part II): in Silico prediction of IKK-2 inhibitors in natural extracts with known anti-inflammatory activity . European Journal of Medicinal Chemistry 46 : 6098 – 6103 . https://doi.org/10.1016/j.ejmech.2011.09.022 . Jumper , J. and Hassabis , D. ( 2022 ). Protein structure predictions to atomic accuracy with AlphaFold . Nature Methods 19 : 11 – 12 . https://doi.org/10.1038/s41592-021-01362-6 . Varadi , M. , Anyango , S. , Deshpande , M. et al. ( 2022 ). AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models . Nucleic Acids Research 50 : D439 – D444 . https://doi.org/10.1093/nar/gkab1061 . Jumper , J. , Evans , R. , Pritzel , A. et al. ( 2021 ). Highly accurate protein structure prediction with AlphaFold . Nature 596 : 583 – 589 . https://doi.org/10.1038/s41586-021-03819-2 . Schauperl , M. and Denny , R.A. ( 2022 ). AI-based protein structure prediction in drug discovery: impacts and challenges . Journal of Chemical Information and Modeling 62 : 3142 – 3156 . https://doi.org/10.1021/ACS.JCIM.2C00026 . Perrakis , A. and Sixma , T.K. ( 2021 ). AI revolutions in biology: the joys and perils of AlphaFold . EMBO Reports 22 : e54046 . https://doi.org/10.15252/embr.202154046 . He , X. , You , C. , Jiang , H. et al. ( 2022 ). AlphaFold2 versus experimental structures: evaluation on G protein-coupled receptors . Acta Pharmacologica Sinica 44 : 1 – 7 . https://doi.org/10.1038/S41401-022-00938-Y . Daina , A. , Michielin , O. , and Zoete , V. ( 2017 ). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules . Scientific Reports 7 : 42717 . https://doi.org/10.1038/srep42717 . Doogue , M.P. and Polasek , T.M. ( 2013 ). The ABCD of clinical pharmacokinetics . Therapeutic Advances in Drug Safety 4 : 5 – 7 . https://doi.org/10.1177/2042098612469335 . Lagorce , D. , Bouslama , L. , Becot , J. et al. ( 2017 ). FAF-Drugs4: free ADME-tox filtering computations for chemical biology and early stages drug discovery . Bioinformatics 33 : 3658 – 3660 . https://doi.org/10.1093/bioinformatics/btx491 . Baell , J.B. and Nissink , J.W.M. ( 2018 ). Seven year itch: pan-assay interference compounds (PAINS) in 2017-utility and limitations . ACS Chemical Biology 13 : 36 – 44 . https://doi.org/10.1021/ACSCHEMBIO.7B00903 . SwissADME . Availabl e online: http://www.swissadme.ch/ (accessed on Aug 19, 2022). FAFDrugs4 Home . Available online: https://fafdrugs4.rpbs.univ-paris-diderot.fr/ (accessed 19 August 2022). Daylight Theory: SMILES . Available online: https://www.daylight.com/dayhtml/doc/theory/theory.smiles.html (accessed 19 August 2022). The SDfile Format . Available online: https://depth-first.com/articles/2020/07/13/the-sdfile-format/ (accessed 19 August 2022). Pujadas , G. , Vaque , M. , Ardevol , A. et al. ( 2008 ). Protein-ligand docking: a review of recent advances and future perspectives . Current Pharmaceutical Analysis 4 : 1 – 19 . https://doi.org/10.2174/157341208783497597 . Miller , E.B. , Murphy , R.B. , Sindhikara , D. et al. ( 2021 ). Reliable and accurate solution to the induced fit docking problem for protein-ligand binding . Journal of Chemical Theory and Computation 17 : 2630 – 2639 . https://doi.org/10.1021/acs.jctc.1c00136 . Paul , D.S. and Gautham , N. ( 2017 ). iMOLSDOCK: induced-fit docking using mutually orthogonal Latin squares (MOLS) . Journal of Molecular Graphics & Modelling 74 : 89 – 99 . https://doi.org/10.1016/j.jmgm.2017.03.008 . Bolia , A. and Ozkan , S.B. ( 2016 ). Adaptive BP-dock: an induced fit docking approach for full receptor flexibility . Journal of Chemical Information and Modeling 56 : 734 – 746 . https://doi.org/10.1021/acs.jcim.5b00587 . Zavodszky , M.I. , Lei , M. , Thorpe , M.F. et al. ( 2004 ). Modeling correlated main-chain motions in proteins for flexible molecular recognition . Proteins 57 : 243 – 261 . https://doi.org/10.1002/prot.20179 . Madadkar-Sobhani , A. and Guallar , V. ( 2013 ). PELE web server: atomistic study of biomolecular systems at your fingertips . Nucleic Acids Research 41 : W322 – W328 . https://doi.org/10.1093/nar/gkt454 . Hall-Swan , S. , Devaurs , D. , Rigo , M.M. et al. ( 2021 ). DINC-COVID: a webserver for ensemble docking with flexible SARS-CoV-2 proteins . Computers in Biology and Medicine 139 : 104943 . https://doi.org/10.1016/j.compbiomed.2021.104943 . Chandak , T. and Wong , C.F. ( 2021 ). EDock-ML: a web server for using ensemble docking with machine learning to aid drug discovery . Protein Science 30 : 1087 – 1097 . https://doi.org/10.1002/pro.4065 . Trott , O. and Olson , A.J. ( 2010 ). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading . Journal of Computational Chemistry 31 : 455 – 461 . https://doi.org/10.1002/jcc.21334 . AutoDock Vina Available online: https://vina.scripps.edu/ (accessed 19 August 2022). Schneidman-Duhovny , D. , Dror , O. , Inbar , Y. et al. ( 2008 ). PharmaGist: a webserver for ligand-based pharmacophore detection . Nucleic Acids Research 36 : W223 – W228 . https://doi.org/10.1093/nar/gkn187 . PharmaGist Webserver . Available online: http://bioinfo3d.cs.tau.ac.il/pharma/index.html (accessed 19 August 2022). Deshmukh , M.G. , Ippol ito , J.A. , Zhang , C.-H. et al. ( 2021 ). Structure-guided design of a perampanel-derived pharmacophore targeting the SARS-CoV-2 main protease . Structure 29 : 1 – 11 . https://doi.org/10.1016/j.str.2021.06.002 . Pharmit: interactive exploration of chemical space . Available online: http://pharmit.csb.pitt.edu (accessed 19 August 2022). Sunseri , J. and Koes , D.R. ( 2016 ). Pharmit: interactive exploration of chemical space . Nucleic Acids Research 44 : W442 – W448 . https://doi.org/10.1093/nar/gkw287 . Koes , D.R. ( 2018 ). The pharmit backend: a computer systems approach to enabling interactive online drug discovery . IBM Journal of Research and Development 62 : 1 – 6 . https://doi.org/10.1147/jrd.2018.2883977 . Koes , D.R. and Camacho , C.J. ( 2012 ). ZINCPharmer: pharmacophore search of the ZINC database . Nucleic Acids Research 40 : W409 – W414 . https://doi.org/10.1093/nar/gks378 . ZINCPharmer website . Available online: http://zincpharmer.csb.pitt.edu/ (accessed 19 August 2022). Kumar , A. and Zhang , K.Y.J. ( 2018 ). Advances in the development of shape similarity methods and their application in drug discovery . Frontiers in Chemistry 6 : 315 . https://doi.org/10.3389/fchem.2018.00315 . Armstrong , M.S. , Morris , G.M. , Finn , P.W. et al. ( 2010 ). ElectroShape: fast molecular similarity calculations incorporating shape, chirality and electrostatics . Journal of Computer-Aided Molecular Design 24 : 789 – 801 . https://doi.org/10.1007/s10822-010-9374-0 . Johansson , L. , Fotsch , C. , Bartberger , M.D. et al. ( 2008 ). 2-amino-1,3-thiazol-4(5 H )-ones as potent and selective 11beta-hydroxysteroid dehydrogenase type 1 inhibitors: enzyme-ligand co-crystal structure and demonstration of pharmacodynamic effects in C57Bl/6 mice . Journal of Medicinal Chemistry 51 : 2933 – 2943 . https://doi.org/10.1021/jm701551j . Bolcato , G. , Heid , E. , and Boström , J. ( 2022 ). On the value of using 3D shape and electrostatic similarities in deep generative methods . Journal of Chemical Information and Modeling 62 : 1388 – 1398 . https://doi.org/10.1021/ACS.JCIM.1C01535/SUPPL_FILE/CI1C01535_SI_001.PDF . Burley , S.K. , Bhikadiya , C. , Bi , C. et al. ( 2021 ). RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences . Nucleic Acids Research 49 : D437 – D451 . https://doi.org/10.1093/nar/gkaa1038 . Joosten , R.P. , Long , F. , Murshudov , G.N. , and Perrakis , A. ( 2014 ). The PDB_REDO server for macromolecular structure model optimization . IUCrJ 1 : 213 – 220 . https://doi.org/10.1107/S2052252514009324 . Bienert , S. , Waterhouse , A. , de Beer , T.A.P. et al. ( 2017 ). The SWISS-MODEL Repository-new features and functionality . Nucleic Acids Research 45 : D313 – D319 . https://doi.org/10.1093/nar/gkw1132 . ( 1971 ). Crystallography: protein data bank . Nature: New Biology 233 : 223 – 223 . https://doi.org/10.1038/newbio233223b0 . PDB Data Distribution by Experimental Method and Molecular Type. Available online: https://www.rcsb.org/stats/summary (accessed 19 August 2022). PDB file format version 3.3. Available online: http://www.wwpdb.org/documentation/file-format-content/format33/v3.3.html (accessed 19 August 2022). PDBx/mmCIF Dictionary Resources Available online: https://mmcif.wwpdb.org/ (accessed 19 August 2022). RCSB Protein Data Bank Homepage. Available online: https://www.rcsb.org/ (accessed 19 August 2022). Armstrong , D.R. , Berrisford , J.M. , Conroy , M.J. et al. ( 2020 ). PDBe: improved findability of macromolecular structure data in the PDB . Nucleic Acids Research 48 : D335 – D343 . https://doi.org/10.1093/NAR/GKZ990 . The PDB-REDO server for macromolecular structure model optimization. Available online: https://pdb-redo.eu/ (accessed 19 August 2022). Joosten , R.P. , Salzemann , J. , Bloch , V. et al. ( 2009 ). PDB_REDO: automated re-refinement of X-ray structure models in the PDB . Journal of Applied Crystallography 42 : 376 – 384 . https://doi.org/10.1107/S0021889809008784 . Cereto-Massagué , A. , Ojeda , M.J. , Joosten , R.P. et al. ( 2013 ). The good, the bad and the dubious: VHELIBS, a validation helper for ligands and binding sites . Journal of Cheminformatics 5 : 36 . https://doi.org/10.1186/1758-2946-5-36 . Berman , H.M. , Battistuz , T. , Bhat , T.N. et al. ( 2002 ). The protein data bank . Acta Crystallographica. Section D, Biological Crystallography 58 : 899 – 907 . Kleywegt , G.J. , Harris , M.R. , Zou , J.Y. et al. ( 2004 ). The uppsala electron-density server . Acta Crystallographica, Section D: Biological Crystallography 60 : 2240 – 2249 . https://doi.org/10.1107/S0907444904013253 . Boutet , E. , Lieberherr , D. , Tognolli , M. et al. ( 2016 ). UniProtKB/Swiss-Prot, the manually annotated section of the UniProt knowledgeBase: how to use the entry view . Methods in Molecular Biology 1374 : 23 – 54 . https://doi.org/10.1007/978-1-4939-3167-5_2 . Benkert , P. , Biasini , M. , and Schwede , T. ( 2011 ). Toward the estimation of the absolute quality of individual protein structure models . Bioinformatics 27 : 343 – 350 . https://doi.org/10.1093/bioinformatics/btq662 . Waterhouse , A. , Bertoni , M. , Bienert , S. et al. ( 2018 ). SWISS-MODEL: homology modelling of protein structures and complexes . Nucleic Acids Research 46 : W296 – W303 . https://doi.org/10.1093/nar/gky427 . SWISS-MODEL Available online: https://swissmodel.expasy.org/ (accessed 19 August 2022). The SWISS-MODEL Repository Available online: https://swissmodel.expasy.org/repository (accessed 19 August 2022). AlphaFold Protein Structure Database. Available online: https://alphafold.ebi.ac.uk/ (accessed 19 August 2022). AlphaFold Protein Structure Database. Download page Available online: https://alphafold.ebi.ac.uk/download (accessed 19 August 2022). Rhodes , G. ( 2006 ). Crystallography made crystal clear : a guide for users of macromolecular models . Elsevier/Academic Press ISBN 9780125870733. VHELIBS by URVnutrig enomica-CTNS. Available from: https://github.com/URVquimioinformatica-COS/VHELIBS . Douangamath , A. , Fearon , D. , Gehrtz , P. et al. ( 2020 ). Crystallographic and electrophilic fragment screening of the SARS-CoV-2 main protease . Nature Communications 11 : 1 – 11 . https://doi.org/10.1038/s41467-020-18709-w . Sorokina , M. , Merseburger , P. , Rajan , K. et al. ( 2021 ). COCONUT online: collection of open natural products database . Journal of Cheminformatics 13 : 2 . https://doi.org/10.1186/s13321-020-00478-9 . Fink , T. and Reymond , J.-L. ( 2007 ). Virtual exploration of the chemical universe up to 11 atoms of C, N, O, F: assembly of 26.4 million structures (110.9 million stereoisomers) and analysis for new ring systems, stereochemistry, physicochemical properties, compound classes, and drug discovery . Journal of Chemical Information and Modeling 47 : 342 – 353 . https://doi.org/10.1021/ci600423u . Irwin , J.J. , Tang , K.G. , Young , J. et al. ( 2020 ). ZINC20-A free ultralarge-scale chemical database for ligand discovery . Journal of Chemical Information and Modeling 60 : 6065 – 6073 . https://doi.org/10.1021/acs.jcim.0c00675 . Ntie-Kang , F. , Zofou , D. , Babiaka , S.B. et al. ( 2013 ). AfroDb: a select highly potent and diverse natural product library from African medicinal plants . PLoS One 8 : e78085 . https://doi.org/10.1371/journal.pone.0078085 . Gentile , D. , Patamia , V. , Scala , A. et al. ( 2020 ). Putative inhibitors of SARS-CoV-2 main protease from a library of marine natural products: a virtual screening and molecular modeling study . Marine Drugs 18 : 225 . https://doi.org/10.3390/md18040225 . van Santen , J.A. , Jacob , G. , Singh , A.L. et al. ( 2019 ). The natural products atlas: an open access knowledge base for microbial natural products discovery . ACS Central Science 5 : 1824 – 1833 . https://doi.org/10.1021/acscentsci.9b00806 . Banerjee , P. , Erehman , J. , Gohlke , B.-O. et al. ( 2015 ). Super Natural II – a database of natural products . Nucleic Acids Research 43 : D935 – D939 . https://doi.org/10.1093/nar/gku886 . Chen , C.Y.-C. ( 2011 ). TCM Database@Taiwan: the world's largest traditional Chinese medicine database for drug screening in silico . PLoS One 6 : e15939 . https://doi.org/10.1371/journal.pone.0015939 . Gu , J. , Gui , Y. , Chen , L. et al. ( 2013 ). Use of natural products as chemical library for drug discovery and network pharmacology . PLoS One 8 : e62839 . https://doi.org/10.1371/journal.pone.0062839 . COCONUT database download page. Available online: https://coconut.naturalproducts.net/download (accessed 19 August 2022). Blum , L.C. and Reymond , J.-L. ( 2009 ). 970 million druglike small molecules for virtual screening in the chemical universe database GDB-13 . Journal of the American Chemical Society 131 : 8732 – 8733 . https://doi.org/10.1021/ja902302h . Ruddigkeit , L. , van Deursen , R. , Blum , L.C. , and Reymond , J.-L. ( 2012 ). Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17 . Journal of Chemical Information and Modeling 52 : 2864 – 2875 . https://doi.org/10.1021/ci300415d . Meier , K. , Bühlmann , S. , Arús-Pous , J. , and Reymond , J.-L. ( 2020 ). The generated databases (GDBs) as a source of 3D-shaped building blocks for use in medicinal chemistry and drug discovery . Chimia (Aarau). 74 : 241 – 246 . https://doi.org/10.2533/chimia.2020.241 . Awale , M. , Sirockin , F. , Stiefl , N. , and Reymond , J.-L. ( 2019 ). Medicinal chemistry aware database GDBMedChem . Molecular Informatics 38 : e1900031 . https://doi.org/10.1002/minf.201900031 . GDB databases download page. Available online: https://gdb.unibe.ch/downloads/ (accessed 19 August 2022). Molecules contributing to the biogenic subset in ZINC20. Available online: https://zinc20.docking.org/substances/subsets/biogenic/ (accessed 19 August 2022). Catalogs contributing to the biogenic subset in ZINC20. Available online: https://zinc20.docking.org/catalogs/subsets/biogenic/ (accessed 19 August 2022). The Binding Database Available online: https://www.bindingdb.org/ (accessed 19 August 2022). Chen , X. , Liu , M. , and Gilson , M.K. ( 2001 ). BindingDB: a web-accessible molecular recognition database . Combinatorial Chemistry & High Throughput Screening 4 : 719 – 725 . https://doi.org/10.2174/1386207013330670 . Kim , S. , Chen , J. , Cheng , T. et al. ( 2021 ). PubChem in 2021: new data content and improved web interfaces . Nucleic Acids Research 49 : D1388 – D1395 . https://doi.org/10.1093/nar/gkaa971 . PubChem Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed 19 August 2022). ChEMBL Database Available online: https://www.ebi.ac.uk/chembl/ (accessed 19 August 2022). Gaulton , A. , Hersey , A. , Nowotka , M. et al. ( 2017 ). The ChEMBL database in 2017 . Nucleic Acids Research 45 : D945 – D954 . https://doi.org/10.1093/nar/gkw1074 . Creative Commons Attribution License Available online: https://creativecommons.org/licenses/by/3.0/us/ (accessed 19 August 2022). Gilson , M.K. , Liu , T. , Baitaluk , M. et al. ( 2016 ). BindingDB in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology . Nucleic Acids Research 44 : D1045 – D1053 . https://doi.org/10.1093/nar/gkv1072 . Cao , Y. , Charisi , A. , Cheng , L.-C. et al. ( 2008 ). ChemmineR: a compound mining framework for R . Bioinformatics 24 : 1733 – 1734 . https://doi.org/10.1093/bioinformatics/btn307 . Kim , S. ( 2016 ). Getting the most out of PubChem for virtual screening . Expert Opinion on Drug Discovery 11 : 843 – 855 . https://doi.org/10.1080/17460441.2016.1216967 . Creative Commons Attribution-Share Alike 3.0 Unported License. Available online: https://creativecommons.org/licenses/by-sa/3.0/ (accessed 19 August 2022). The PubChem BioAssay Adva nced Search Builder Available online: https://www.ncbi.nlm.nih.gov/pcassay/advanced (accessed 19 August 2022). InCell qHTS Assay for Inhibitors of the mTORC1 Signaling Pathway in WT MEF Cells: Hit Validation. Available online: https://pubchem.ncbi.nlm.nih.gov/bioassay/651793 (accessed 19 August 2022). Cereto-Massagué , A. , Guasch , L. , Valls , C. et al. ( 2012 ). DecoyFinder: an easy-to-use python GUI application for building target-specific decoy sets . Bioinformatics 28 : 1661 – 1662 . https://doi.org/10.1093/bioinformatics/bts249 . Huang , N. , Shoichet , B.K. , and Irwin , J.J. ( 2006 ). Benchmarking sets for molecular docking . Journal of Medicinal Chemistry 49 : 6789 – 6801 . https://doi.org/10.1021/jm0608356 . Bender , A. and Glen , R.C. ( 2005 ). A discussion of measures of enrichment in virtual screening: comparing the information content of descriptors with increasing levels of sophistication . Journal of Chemical Information and Modeling 45 : 1369 – 1375 . https://doi.org/10.1021/ci0500177 . Mysinger , M.M. , Carchia , M. , Irwin , J.J. , and Shoichet , B.K. ( 2012 ). Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking . Journal of Medicinal Chemistry 55 : 6582 – 6594 . https://doi.org/10.1021/jm300687e . DUD-E: A Database of Useful (Docking) Decoys - Enhanced. Available online: http://dude.docking.org/ (accessed 19 August 2022). Bauer , M.R. , Ibrahim , T.M. , Vogel , S.M. , and Boeckler , F.M. ( 2013 ). Evaluation and optimization of virtual screening workflows with DEKOIS 2.0 – a public library of challenging docking benchmark sets . Journal of Chemical Information and Modeling 53 : 1447 – 1462 . https://doi.org/10.1021/ci400115b . DEKOIS: Demanding Evaluation Kits for Objective In silico Screening. Available online: http://www.pharmchem.uni-tuebingen.de/dekois/ (accessed 19 August 2022). Wallach , I. and Lilien , R. ( 2011 ). Virtual decoy sets for molecular docking benchmarks . Journal of Chemical Information and Modeling 51 : 196 – 202 . https://doi.org/10.1021/ci100374f . Virtual Decoy Sets. Available online: http://compbio.cs.toronto.edu/VDS/ (accessed 16 January 2022). Make Decoys for your own ligands. Available online: http://dude.docking.org/generate (accessed 19 August 2022). Pearlman , D.A. and Charifson , P.S. ( 2001 ). Improved scoring of ligand-protein interactions using OWFEG free energy grids . Journal of Medicinal Chemistry 44 : 502 – 511 . https://doi.org/10.1021/jm000375v . Truchon , J.-F. and Bayly , C.I. ( 2007 ). Evaluating virtual screening methods: good and bad metrics for the "early recognition" problem . Journal of Chemical Information and Modeling 47 : 488 – 508 . https://doi.org/10.1021/ci600426e . Mervin , L.H. , Afzal , A.M. , Drakakis , G. et al. ( 2015 ). Target prediction utilising negative bioactivity data covering large chemical space . Journal of Cheminformatics 7 : 51 . https://doi.org/10.1186/s13321-015-0098-y . ( 2018 ). NCBI resource coordinators dat abase resources of the national center for biotechnology information . Nucleic Acids Research 46 : D8 – D13 . https://doi.org/10.1093/nar/gkx1095 . Davies , M. , Nowotka , M. , Papadatos , G. et al. ( 2015 ). ChEMBL web services: streamlining access to drug discovery data and utilities . Nucleic Acids Research 43 : W612 – W620 . https://doi.org/10.1093/nar/gkv352 . Nowotka , M.M. , Gaulton , A. , Mendez , D. et al. ( 2017 ). Using ChEMBL web services for building applications and data processing workflows relevant to drug discovery . Expert Opinion on Drug Discovery 12 : 757 – 767 . https://doi.org/10.1080/17460441.2017.1339032 . Macip , G. , Garcia-Segura , P. , Mestres-Truyol , J. et al. ( 2021 ). Haste makes waste: a critical review of docking-based virtual screening in drug repurposing for SARS-CoV-2 main protease (M-pro) inhibition . Medicinal Research Reviews 42 : 744 – 769 . https://doi.org/10.1002/med.21862 . Macip , G. ; Garcia-Segura , P. ; Mestres-Truyol , J. ; Saldivar-Espinoza , B. ; Pujadas , G. ; Garcia-Vallvé , S. A review of the current landscape of SARS-CoV-2 main protease inhibitors: have we hit the bullseye yet? International Journal of Molecular Sciences 2021 , 23 , 259 . https://doi.org/10.3390/ijms23010259 . Bosc , N. , Atkinson , F. , Felix , E. et al. ( 2019 ). Large scale comparison of QSAR and conformal prediction methods and their applications in drug discovery . Journal of Cheminformatics 11 : 4 . https://doi.org/10.1186/s13321-018-0325-4 . Open Access Databases and Datasets for Drug Discovery ReferencesRelatedInformation

Referência(s)