
IAPT chromosome data 39 – Extended version
2023; Wiley; Volume: 72; Issue: 5 Linguagem: Italiano
10.1002/tax.13077
ISSN1996-8175
AutoresKarol Marhold, Jaromír Kučera, Janna Akopian, Lânia Isis Ferreira Alves, William Santana Alves, George Sidney Baracho, Ana Emília Barros e Silva, Fabiane Rabelo da Costa Batista, Leonardo Luiz Calado, Joel Maciel Pereira Cordeiro, Sibelle Dias, Lúcio Ricardo Leite Diniz, Leonardo P. Félix, Anahit Ghukasyan, Talita Kelly Pinheiro Lucena, A Medeiros, Kenneth Oberlander, Harrison L.S. Rocha, Lamarck Rocha, Angeline Maria da Silva Santos, Gideon F. Smith, Mats Thulin, Damian Vaz de Sousa,
Tópico(s)Banana Cultivation and Research
Resumo*Address for correspondence: [email protected] Financial support from CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and FAPESQ (Fundação de Apoio à Pesquisa do Estado da Paraíba – Edital no 006/2020 PDCTR-PB). * New cytotype for the species. Anthurium affine Schott 2n = 30, CHN. Brazil, Alagoas, Ibateguara, 08°58′35″S, 35°53′48″W, 28 Oct 2014, L.P. Felix 15163 (EAN) [Fig. 1A]; Brazil, Bahia, Santa Brigida, 09°41′14″S, 30°13′50″W, 16 Jan 2014, E.M. Almeida 882 (EAN) [Fig. 1B]; Brazil, Paraiba, Belem, 06°44′05″S, 35°31′03″W, 12 Jun 2012, E.M. Almeida 524 (EAN) [Fig. 1C]; Brazil, Paraiba, Barra de Santana, 07°29′01″S, 36°02′59″W, 22 Dec 2013, E.M. Almeida 832 (EAN) [Fig. 1D]; Brazil, Paraiba, Esperança, 07°01′01″S, 35°52′50″W, 13 Apr 2020, L.P. Felix 18526 (EAN) [Fig. 1E]; Brazil, Paraiba, Bananeiras, 06°44′29″S, 35°37′03″W, 29 Apr 2020, L.P. Felix 18547 (EAN) [Fig. 1F]; Brazil, Paraiba, Algodao de Jandaira, 06°48′57″S, 35°55′19″W, 12 Apr 2021, L.P. Felix 18612 (EAN) [Fig. 1G]; Brazil, Pernambuco, Aguas Belas, 09°04′10″S, 37°00′42″W, 01 Aug 2012, E.M. Almeida 453 (EAN) [Fig. 1H]; Brazil, Pernambuco, Garanhuns, 08°53′27″S, 36°29′48″W, 25 Aug 2013, L.P. Felix 14360 (EAN) [Fig. 1I]. 2n = 30 + 1B, CHN. Brazil, Bahia, Milagres, 12°53′12″S, 39°49′38″W, 19 Jan 2014, E.M. Almeida 966 (EAN) [Fig. 2A]; Brazil, Bahia, Andarai, 12°51′16″S, 41°18′48″W, 26 Jan 2014, L.P. Felix 14802 (EAN) [Fig. 2B]; Brazil, Bahia, Jaguarari, 10°12′44″S, 40°13′54″W, 18 Sep 2021, L.P. Felix 18816 (EAN) [Fig. 2C]; Brazil, Minas Gerais, Pedra Azul, 16°00′29″S, 41°22′46″W, 03 Oct 2021, L.P. Felix 19304 (EAN) [Fig. 2D]; Brazil, Pernambuco, Aguas Belas, 09°04′10″S, 37°00′42″W, 02 Aug 2012, E.M. Almeida 462 (EAN) [Fig. 2E]; Brazil, Pernambuco, Buique, 08°33′32″S, 37°13′09″W, 31 Jul 2014, J.P. Castro 408 (EAN) [Fig. 2F]. 2n = 30 + 2B, CHN. Brazil, Paraiba, Queimadas, 07°22′37′S, 35°58′39″W, 18 Dec 2013, L.P. Felix 14635 (EAN) [Fig. 2G]; Brazil, Alagoas, Maravilha, 09°14′31″S, 37°19′48″W, 12 Feb 2022, L.P. Felix 19447 (EAN) [Fig. 2H]. 2n = 30 + 3B, CHN. Brazil, Paraiba, Bananeiras, 06°47′26″S, 35°34′40″W, 28 Feb 2021, L.P. Felix 18580 (EAN) [Fig. 2I]; Brazil, Alagoas, Quebrangulo, 09°04′10″S, 37°00′42″W, 03 Aug 2012, E.M. Almeida 476 (EAN) [Fig. 2J]. *2n = 30 + 4B, CHN. Brazil, Bahia, Morro do Chapéu, 11°37′41″S, 41°00′04″W, 21 Sep 2021, L.P. Felix 18887 (EAN) [Fig. 2K]. The Araceae family occurs on all continents (except Antarctica), being absent only in permanently frozen regions, being more diverse in tropical regions. They are herbaceous plants that occupy quite variable habitats (terrestrial, aquatic, rupicolous, epiphytic and hemiepiphytic plants). Araceae comprises 118 genera and approximately 3300 species divided into four subfamilies: Aroideae, Gymnostachydoideae, Lemnoideae, and Orontioideae (Christenhusz & al., 2017; Boyce & Croat, 2018). Anthurium Schott is the largest genus in the family, including 950 species of exclusively Neotropical distribution. For Brazil, there are records of 153 species, of which 123 are endemic (Coelho & al., 2022). Among these, A. affine Schott stands out, a species endemic to Brazil, from rupicolous or terrestrial habitats, occurring in the phytogeographic domains of the Caatinga (dry forest), Cerrado (savannah vegetation) and Atlantic Forest (Perennial Tropical Forest). There are records of several counts for the species with a predominance of 2n = 30 and a variable number of B chromosomes (Carvalheira & al., 1991; Cotias-de-Oliveira & al., 1999; Vilar & al., 2017; Pavlova, 2017). B chromosomes can be of autosomal intraspecific origin, when they originate in the same species, and autosomal interspecific, when they originate by hybridization between different species (Camacho & al., 2000; Houben, 2017). This type of chromosome, although considered a dispensable genome, according to more recent studies may have some gene activity, as there is a record of transcription of genes in plants and animals (Silva & al., 2021). In this work, we analyzed the variability of chromosome number in Anthurium affine occurring in Brazil in order to identify intraspecific variations of supernumerary chromosomes in different populations. For cytogenetic analyses, root tips were pre-treated with 0.2% colchicine for 24 h at 10°C, fixed in ethanol–acetic acid 3 : 1 (v/v) for 2 h at room temperature and subsequently stored at –20°C. Then, the material was washed in distilled water and digested in an enzymatic solution containing 2% cellulase and 20% pectinase (w/v) for 1 h at 37°C. The slides were prepared by the crushing method in 60% acetic acid (Guerra & Souza, 2002). The best slides were selected and stained with 10 μl of DAPI (4′,6-Diamidino-2-phenylindole) with glycerol mounting medium and McIlvaine buffer (pH 7.0) (1 : 1, v/v). The slides were photographed in a Zeiss epifluorescence photomicroscope equipped with an AxioCam MRC5 video camera with the aid of Axiovision 4.8 software. Among the analyzed populations, nine had 2n = 30 and absence of B chromosomes (Fig. 1A–I), compatible with previous records in which this type of chromosome was not observed (Vilar & al., 2017; Santos & al., 2018). On the other hand, a variable number of B chromosomes was observed in the other populations, with 2n = 30 + 1B in the populations of Milagres, Andarai and Jaguarari (Fig. 2A–C), Pedra Azul, Aguas Belas and Buique (Fig. 1D–F), 2n = 30 + 2B in the populations of Queimadas and Maravilha (Fig. 2G,H), 2n = 30 + 3B in the populations of Bananeiras and Quebrangulo (Fig. 2I,J) and 2n = 30 + 4B in the population of Morro do Chapéu (Fig. 2K). Our analysis of several populations of Anthurium affine, corroborated previous analyses with records of B chromosomes in a variable number from 0 to 4 for other populations of the Northeast Region of Brazil (Cotias-de-Oliveira & al., 1999; Nascimento & al., 2019). Boyce, P.C. & Croat, T.B. 2018. The Überlist of Araceae totals for published and estimated number of species in aroid genera. http://www.aroid.org/genera/130307uberlist.pdf (accessed 10 Dec 2022). Camacho, J.P.M., Sharbel, T.F. & Beukeboom, L.W. 2000. B-chromosome evolution. Philos. Trans., Ser. B 355: 163–178. https://doi.org/10.1098/rstb.2000.0556 Carvalheira, G.M.G., Guerra, M., Santos, G.A., Andrade, V.C. & Farias, M.C.A. 1991. Citogenética de angiospermas coletadas em Pernambuco - IV. Acta Bot. Brasil. 5: 37–51. https://doi.org/10.1590/S0102-33061991000200003 Christenhusz, M.J.M., Fay, M.F. & Chase, M.W. 2017. Plants of the world: An illustrated encyclopedia of vascular plant families. Kew: Royal Botanic Gardens. Coelho, M.A.N., Soares, M.L., Calazans, L.S.B., Gonçalves, E.G., Andrade, I.M., Pontes, T.A., Sakuragui, C.M., Temponi, L.G., Buturi, C. & Mayo, S. 2022. Araceae. In: Lista de Espécies da Flora do Brasil. Rio de Janeiro: Jardim Botânico do Rio de Janeiro. http://floradobrasil2015.jbrj.gov.br/FB15619 (accessed: 10 Dec 2022). Cotias-de-Oliveira, A.L.P., Guedes, M.L.S. & Barreto, E.C. 1999. Chromosome numbers for Anthurium and Philodendron spp. (Araceae) occurring in Bahia, Brazil. Genet. Molec. Biol. 22: 237–242. https://doi.org/10.1590/S1415-47571999000200018 Guerra, M. & Souza, M.J. 2002. Como observar cromossomos: Um guia de técnicas em citogenética vegetal, animal e humana, 1st ed. Ribeirão Preto: FUNPEC. Houben, A. 2017. B chromosomes – A matter of chromosome drive. Frontiers Pl. Sci. (Online journal) 8: 210. https://doi.org/10.3389/fpls.2017.00210 Nascimento, S., Coelho, M.A.N., Cordeiro, J.M.P. & Felix, L.P. 2019. Chromosomal variability in Brazilian species of Anthurium Schott (Araceae): Heterochromatin, polyploidy, and B chromosomes. Genet. Molec. Biol. 42: 635–642. https://doi.org/10.1590/1678-4685-GMB-2018-0080 Pavlova, D. 2017. [Records]. In: Marhold, K. & Kučera, J. (eds.), IAPT/IOPB chromosome data 24. Taxon 66: 276, E8–E10. https://doi.org/10.12705/661.37 Santos, A.M.S., Nollet, F., Rapini, A., Barreto, R.C., Cordeiro, J.M.P., Almeida, E.M., Silva, J.L., Batista, F.R.C. & Felix, L.P. 2018. [Records]. In: Marhold, K. & Kučera. J. (eds.), IAPT/IOPB chromosome data 28. Taxon 67: 1243, E34–38. https://doi.org/10.12705/676.39 Silva, D.M., Ruiz-Ruano, F.J., Utsunomia, R., Martín-Peciña, M., Castro, J.P., Freire, P.P., Carvalho, R.F., Hashimoto, D.T., Suh, A., Oliveira, C., Porto-Foresti, F., Artoni, R.F., Foresti, F. & Camacho, J.P.M. 2021. Long-term persistence of supernumerary B chromosomes in multiple species of Astyanax fish. B. M. C. Biol. 19: 52. https://doi.org/10.1186/s12915-021-00991-9 Vilar, F.C.R., Felix, L.P., Mayo, S.J., Coelho, M.A.N., Barros e Silva, A.E. & Guerra, M. 2017. [Records]. In: Marhold, K. & Kučera. J. (eds.), IAPT/IOPB chromosome data 24. Taxon 66: 276–277, E10–E16. https://doi.org/10.12705/661.37 *Address for correspondence: [email protected] This study was supported by Conselho Nacional de Pesquisa (CNPq), Instituto Nacional do Semiárido (INSA) and Universidade Federal da Paraíba (UFPB). Methods for chromosome analysis are according to Guerra & Souza (2002) with modifications. * First chromosome counts for species. *Arrojadoa bahiensis (P.J.Braun & Esteves) N.P. Taylor & Eggli 2n = 22, CHN. Brazil, Bahia, Canyon Fumacinha Ibiocoara, 13°17′10″S, 41°15′37″W, 760 m, 23 Dec 2019, E.M. Almeida 2979 (EAN) [Fig. 3A]. Brasiliopuntia brasiliensis (Willd.) A.Berger 2n = 22, CHN. Brazil, Paraíba, Areia, 06°53′30″S, 35°43′42″W, 509 m, 10 Mar 2016, E.M. Almeida 1584 (EAN) [Fig. 3B]. *Epiphyllum phyllanthus (L.) Haw. subsp. phyllanthus 2n = 22, CHN. Brazil, Pernambuco, Maraial, 08°47′47″S, 36°49′34″W, 222 m, 09 May 2016, E.M. Almeida 1690 (EAN) [Fig. 3C]. *Facheiroa squamosa (Gürke) P.J.Braun & Esteves 2n = 22, CHN. Brazil, Bahia, Ibotirama, 12°26′42″S, 41°59′36″W, 490 m, 01 Dec 2016, E.M. Almeida 1943 (EAN) [Fig. 3D]. *Facheiroa ulei (Gürke) Werderm. 2n = 22, CHN. Brazil, Bahia, Umburanas, 10°35′54″S, 41°27′35″W, 950 m, 08 Dec 2016, E.M. Almeida 1789 (EAN) [Fig. 3E]. Harrisia adscendens (Gürke) Britton & Rose 2n = 22, CHN. Brazil, Pernambuco, Salgueiro, 08°00′37″S, 38°54′15″W, 536 m, 04 Dec 2016, E.M. Almeida 1735 (EAN) [Fig. 3F]. Hylocereus setaceus (Salm-Dyck) Ralf Bauer 2n = 44, CHN. Brazil, Paraíba, Serraria, 06°49′48″S, 35°38′40″W, 522 m, 10 Mar 2016, E.M. Almeida 1596 (EAN) [Fig. 3G]. Lepismium cruciforme (Vell.) Miq. 2n = 22, CHN. Brazil, Pernambuco, Taquaritinga do Norte, 07°54′18″S, 36°01′35″W, 965 m, 04 May 2016, E.M. Almeida 1636 (EAN) [Fig. 3H]. Micranthocereus flaviflorus Buining & Brederoo 2n = 22, CHN. Brazil, Bahia, Morro do Chapéu, 11°29′21″S, 41°20′31″W, 858 m, 09 Dec 2016, E.M. Almeida 1820 (EAN) [Fig. 3I]. *Micranthocereus polyanthus (Werderm.) Backeb. 2n = 22, CHN. Brazil, Bahia, Morro do Chapéu, 10°54′43″S, 41°13′08″W, 652 m, 07 Dec 2016, E.M. Almeida 1767 (EAN) [Fig. 3J]. Pereskia aculeata Mill. 2n = 22, CHN. Brazil, Minas Gerais, Itinga, 16°35′28″S, 41°41′05″W, 306 m, 18 Dec 2016, E.M. Almeida 1594 (EAN) [Fig. 3K]. Pereskia grandifolia Haw. 2n = 22, CHN. Brazil, Sergipe, Pinhão, 16°35′28″S, 41°41′04″W, 306 m, 18 Dec 2016, L.P. Felix 18045 (EAN) [Fig. 3L]. *Quiabentia zehntneri (Britton & Rose) Britton & Rose 2n = 22, CHN. Brazil, Bahia, Bom Jesus da Lapa, 10°37′11″S, 37°44′59″W, 133 m, 19 Jul 2021, L.N.G. Rocha 847 (EAN) [Fig. 3M]. Rhipsalis cereuscula Haw. 2n = 22, CHN. Brazil, Pernambuco, Taquaritinga do Norte, 07°54′27″S, 36°01′13″W, 819 m, 04 May 2016, E.M. Almeida 1631 (EAN) [Fig. 3N]. *Rhipsalis floccosa Salm-Dyck ex Pfeiff. subsp. floccosa 2n = 44, CHN. Brazil, Pernambuco, Maraial, 08°47′57″S, 36°50′09″W, 281 m, 09 May 2016, E.M. Almeida 1692 (EAN) [Fig. 3O]. Tacinga armata J.G.Freitas & E.M.Almeida 2n = 66, CHN. Brazil, Pernambuco, Poção, 08°08′35″S, 36°42′03″W, 1086 m, 20 Nov 2020, E.M. Almeida 3172 (EAN) [Fig. 4A]. Tacinga inamoena (K.Schum.) N.P.Taylor & Stuppy 2n = 44, CHN. Brazil, Pernambuco, Brejo da Madre de Deus, 08°08′43″S, 36°06′43″W, 455 m, 04 May, 2017, E.M. Almeida 1645 (EAN) [Fig. 4B]. *Tacinga werneri (Eggli) N.P.Taylor & Stuppy 2n = 66, CHN. Brazil, Bahia, Morro do Chapéu, 11°40′49″S, 41°00′34″W, 746 m, 05 Apr 2018, E.M. Almeida 2631 (EAN) [Fig. 4C]. Cactaceae is composed of 1450 succulent and non-succulent species (Hunt & al., 2006; Hunt, 2016) of arid and semi-arid zones of the Americas. The Brazilian Semiarid (BS) is one of the most important regions for both diversity and endemism of this group (Taylor & Zappi, 2004). More specifically, there are around 90 native species, of which 34 are endemic. According to Lima-Nascimento & al. (2019) and Zappi & al. (2011), 20 of those cacti species are endangered and 9 are critically endangered due to habitat fragmentation or the specific relationship between species and their habitats (Goettsch & al., 2015). Despite the numerous and significant morphological and anatomical variations in Cactaceae and their importance to many local ecosystems, karyological and evolutionary studies are still incipient (Castro & al., 2020; Majure & al., 2022). Information on the chromosome numbers of plants is important not only for developing species conservation strategies, but also increasing knowledge about genetic variability and potential intercrossing between populations (Levin, 2002; Guerra, 2008), supporting genetic breeding programs, preservation approaches (Freitas & al., 2021) and multidisciplinary studies (Pinkava & al., 1977; González & al., 2016; Castro & al., 2020). Thus, chromosome counts of 18 BS cacti species are presented in Table 1. Root tips were pre-treated with 0.002 M 8-Hydroxyquinoline (8HQ) for 24 h at 6°C and subsequently fixed in 3 : 1 Carnoy solution (absolute ethanol : glacial acetic acid, v/v) for 2 h at room temperature and stored at −20°C. For chromosome slide preparations, root tips were washed twice in distilled H2O (dH2O) for 5 min and digested in an enzymatic solution containing 2% cellulase (Onozuka) and 20% pectinase (Sigma) for 40 min at 37°C. Subsequently, they were squashed in a drop of 45% acetic acid (Guerra & Souza, 2002; with some modifications). For each species, the best slides were aged for three days at room temperature and stained with DAPI (1 μg/ml) and Glycerol (1 : 1 – v/v). The metaphase images were captured on a Zeiss epifluorescent microscope AX10, using an Axio Cam 506 color video camera and Zen v.2.6 Blue Edition (Mirzaghaderi & Marzangi, 2015) software, in the cytogenetic lab of Semi Arid National Institute of (Instituto Nacional do Semiárido, INSA), Paraiba State, Brazil. The most frequently observed chromosome number among the 18 analyzed species was 2n = 22, with polyploidy, 2n = 44, found in Hylocereus setaceus, Rhipsalis floccosa subsp. floccosa and Tacinga inamoena, and 2n = 66 in T. armata and T. werneri. For five species we present here new counts. All species possess symmetrical karyotypes with predominance of metacentric-submetacentric chromosomes and sizes between 1 and 3 μm (Figs. 3, 4), corroborating the hypothesis of chromosome stability in Cactaceae and its basic number x = 11 (Las Penas & al. 2009; Majure & al., 2012; Castro & al. 2020). Natural selection, DNA repair mechanisms (Wachsmuth & al., 2008), as well as interspecific reproductive barriers contribute to chromosomal stability in plants. In general, these barriers prevent recombination between different genomes and reduce fixation of chromosomal rearrangements (Hörandl, 2022; Heslop-Harrison & al., 2023) that, in association with other characteristics like the presence of repetitive and heterochromatic regions, may reduce the rate of chromosomal recombination and the probability of structural changes, ensuring genomic stasis (Guerra, 2000; Avramova, 2002). On the other hand, the small chromosome size (Li & al., 2017) and the presence of repetitive and heterochromatic regions in Cactaceae increase the probability of hybridization and polyploidization (Eng & Ho, 2019; Madani & al., 2021; Heslop-Harrison & al., 2023). This is a positive situation for the expansion of chromosome sets as a whole (Gomes & al., 2012; Heslop-Harrison & al., 2023), but has a negative effect on dysploidy (Luceño & Guerra, 1996; Marinho & al., 2019). Some climatic factors, mainly temperature gradients, either in altitude or latitude, associated with both fragmentation and isolation of populations, have large impact on polyploidy in cacti, as this is an important response to the environment, especially when extreme factors limit taxa present there (Rice & al., 2019; Bauk & al., 2023). Alves, L., Costa Batista, F., Neves, J.d.L., Alves, J., Almeida, E. & Zappi, D.C. 2019. Cytogenetic characterization of Tacinga Britton & Rose (Opuntioideae–Cactaceae). Pp. 43–51 in: Zuffo, A.M. (org.), As regiões semiáridas e suas especificidades, vol. 2. Ponta Grossa: Atena Editora. Avramova, Z.V. 2002. Heterochromatin in animals and plants: Similarities and differences. Pl. Physiol. (Lancaster) 192: 40–49. https://doi.org/10.1104/pp.010981 Bauk, K., Gurvich, D.E. & Las Peñas, M.L. 2023. Cytogenetic characteristics of four Gymnocalycium (Cactaceae) species along altitudinal gradients. Haseltonia 29: 83–95. https://doi.org/10.2985/026.029.0111 Castro, J.P. 2012. Citotaxonomia de espécies de Cactaceae ocorrentes no nordeste do Brasil. Thesis, Universidade Federal da Paraíba, Areia, Brazil. https://repositorio.ufpb.br/jspui/bitstream/tede/8229/2/arquivototal.pdf Castro, J.P., Souza, L.G.R., Alves, L.F., Silva, A.E.B., Guerra, M. & Felix, L.P. 2013. [Records]. In: Marhold, K. (ed.), IAPT/IOPB chromosome data 15. Taxon 62: 1073, E1–E6. https://www.jstor.org/stable/taxon.62.5.1073 Castro, J.P., Moraes, A.P., Chase, M.W., Santos, A.M.S., Batista, F.R.C. & Felix, L.P. 2020. Karyotype characterization and evolution of chromosome number in Cactaceae with special emphasis on subfamily Cactoideae. Acta Bot. Brasil. 34: 135–148. https://doi.org/10.1590/0102-33062019abb0218 Eng, W.-H. & Ho, W.-S. 2019. Polyploidization using colchicine in horticultural plants: A review. Sci. Hort. 246: 604–617. https://doi.org/10.1016/j.scienta.2018.11.010 Forni-Martins, E.R., de Oliveira Maekawa, V. & Calvente, A., 2020. IAPT Chromosome Data 33/6. In: Marhold, K. & Kučera, J. (eds.), IAPT chromosome data 33. Taxon 69: 1399, E22–E27. https://doi.org/10.1002/tax.12414 Freitas, J.G., Alves, L.I.F., Zappi, D.C., Almeida, E.M., Peraza-Flores, L., Amaral, D.O.J., Araújo, D.B.P. & Batista, F.R.D.C. 2021. Novelties in Cactaceae from Eastern Brazil: Adding two new species and one new nothospecies to Tacinga (Opuntioideae). Phytotaxa 490: 239–252. https://doi.org/10.11646/phytotaxa.490.3.2 Goettsch, B., Hilton-Taylor, C., Cruz-Piñón, G., Duffy, J.P., Frances, A., Hernández, H.M., Inger, R., Pollock, C., Schipper, J., Superina, M., Taylor, N.P., Tognelli, M., Abba, A.M., Arias, S., Arreola-Nava, H.J., Baker, M.A., Bárcenas, R.T., Barrios, D., Braun, P., Butterworth, C.A., Búrquez, A., Caceres, F., Chazaro-Basañez, M., Corral-Díaz, R., del Valle Perea, M., Demaio, P.H., Duarte de Barros, W.A., Durán, R., Faúndez Yancas, L., Felger, R.S., Fitz-Maurice, B., Fitz-Maurice, W.A., Gann, G., Gómez-Hinostrosa, C., Gonzales-Torres, L.R., Griffith, M.P., Guerrero, P.C., Hammel, B., Heil, K.D., Hernández-Oria, J.G., Hoffmann, M., Ishihara, M.I., Kiesling, R., Larocca, J., León-de la Luz, J.L., Loaiza S., C.R., Lowry, M., Machadom, M.C., Majure, L.C., Martínez Ávalos, J.G., Martorell, C., Maschinski, J., Méndez, E., Mittermeier, R.A., Nassar, J.M., Negrón-Ortiz, V., Oakley, L.J., Ortega-Baes, P., Pin Ferreira, A.B., Pinkava, D.J., Porter, J.M., Puente-Martinez, P., Gamarra, J.R., Saldivia Pérez, P., Sánchez Martínez, E., Smith, M., Sotomayor M. del C., J.M., Stuart, S.N., Tapia Muñoz, J.L., Terrazas, T., Terry, M., Trevisson, M., Valverde, T., Van Devender, T.R., Véliz-Pérez, M.E., Walter, H.E., Wyatt, S.A., Zappi, D., Zavala-Hurtado, J.A. & Gaston, K.J. 2015. High proportion of cactus species threatened with extinction. Nature Pl. 1: 15142. https://doi.org/10.1038/nplants.2015.142 Gomes, A.M.J., Giulietti, A.M. & Guerra, M. 2012. Mitotic karyotype stability and meiotic irregularities in the families Loranthaceae Juss. and Viscaceae Miq. Caryologia 58: 70–77. https://doi.org/10.1080/00087114.2005.10589435 González, G.E., Ortiz-Díaz, J.J., Figueroa-Cardenas, J.D., Cázares-Sánchez, R., Aguilar-Morales, M., Sánchez-Ulloa, R. & Perales-Ortiz, M.A. 2016. Taxonomic and cytogenetic studies in Opuntia ser. Armatae (Cactaceae). Caryologia 69: 295–306. https://doi.org/10.1139/cjb-2016-0048 Guerra, M. 2000. Patterns of heterochromatin distribution in plant chromosomes. Genet. Molec. Biol. 23: 1029–1041. https://doi.org/10.1590/S1415-47572000000400049 Guerra, M. 2008. Chromosome numbers in plant cytotaxonomy: Concepts and implications. Cytogenet. Genome Res. 120: 339–350. https://doi.org/10.1159/000121083 Guerra, M. & Souza, M. 2002. Como observar cromossomos: Um guia de técnicas em citogenética vegetal, animal e humana. Ribeirão Preto: FUNPEC. Heslop-Harrison, J.S.P., Schwarzacher, T. & Liu, Q. 2023. Polyploidy: Its consequences and enabling role in plant diversification and evolution. Ann. Bot. (Oxford) 131: 1–10. https://doi.org/10.1093/aob/mcac132 Hörandl, E. 2022. Novel approaches for species concepts and delimitation in polyploids and hybrids. Plants (Switzerland) 11(2): 204. https://doi.org/10.3390/plants11020204 Hunt, D.R. 2016. CITES Cactaceae checklist, 3rd ed. Richmond: Royal Botanic Gardens, Kew. https://www.kew.org/sites/default/files/2019-02/CITES%20Cactaceae%20Checklist%20Third%20Edition.pdf Hunt, D.R., Taylor, N.P. & Charles, G. 2006. The new cactus lexicon. Milborne Port: DH Books. Las Peñas, M.L., Urdampilleta, J.D., Bernardello, G. & Forni-Martins, E.R. 2009. Karyotypes, heterochromatin, and physical mapping of 18S-26S rDNA in Cactaceae. Cytogenet. Genome Res. 124: 72–80. https://doi.org/10.1159/000200090 Las Peñas, M.L., Urdampilleta, J.D., López-Carro, B., Santiñaque, F., Kiesling, R. & Bernardello, G. 2013. Classical and molecular cytogenetics and DNA content in Maihuenia and Pereskia (Cactaceae). Pl. Syst. Evol. 300: 549–558. https://doi.org/10.1007/s00606-013-0903-x Levin, D.A. 2002. The role of chromosomal change in plant evolution. New York: Oxford University Press. Li, S.F., Su, T., Cheng, G.Q., Wang, B.X., Li, X., Deng, C.L. & Gao, W.J. 2017. Chromosome evolution in connection with repetitive sequences and epigenetics in plants. Genes 8(10): 250. https://doi.org/10.3390/genes8100290 Lima-Nascimento, A.M., Bento-Silva, J.S., Lucena, C.M. & Lucena, R.F.P. 2019. Ethnobotany of native cacti in the northeast region of Brazil: Can traditional use influence availability? Acta Bot. Brasil. 33: 350–359. https://doi.org/10.1590/0102-33062019abb0166 Luceño, M. & Guerra, M. 1996. Numerical variations in species exhibiting holocentric chromosomes: A nomenclatural proposal. Caryologia 49: 301–309. https://doi.org/10.1080/00087114.1996.10797374 Madani, H., Escrich, A., Hosseini, B., Sanchez-Munoz, R., Khojasteh, A. & Palazon, J. 2021. Effect of polyploidy induction on natural metabolite production in medicinal plants. Biomolecules 11(6): 899. https://doi.org/10.3390/biom11060899 Majure, L.C., Judd, W.S., Soltis, P.S. & Soltis, D.E. 2012. Cytogeography of the Humifusa clade of Opuntia s.s. Mill. 1754 (Cactaceae, Opuntioideae, Opuntieae): Correlations with pleistocene refugia and morphological traits in a polyploid complex. Comparat. Cytogenet. 6(1): 53–77. https://10.3897/CompCytogen.v6i1.2523 Majure, L.C., Barrios, D., Díaz, E., Bacci, L.F. & Piñeyro, Y.E. 2022. Phylogenomics of the Caribbean melocacti: Cryptic species and multiple invasions. Taxon 71: 993–1012. https://doi.org/10.1002/tax.12791 Marinho, M.A.O., Souza, G., Felix, L.P. & de Carvalho, R. 2019. Comparative cytogenetics of the ACPT clade (Anacampserotaceae, Cactaceae, Portulacaceae, and Talinaceae): A very diverse group of the suborder Cactineae, Caryophyllales. Protoplasma 256: 805–814. https://doi.org/10.1007/s00709-018-01334-2 Mirzaghaderi, G. & Marzangi, K. 2015. IdeoKar: An ideogram constructing and karyotype analyzing software. Caryologia 68: 31–35. https://doi.org/10.1080/00087114.2014.998526 Moreno, N.C. 2014. Estudios cariotípicos en cactus epífitos de Argentina (Tribus Hylocereeae y Rhipsalideae). Córdoba: Instituto Multidisciplinario de Biología Vegetal, CONICET – UNC. http://hdl.handle.net/11086/11809 Pinkava, D.J., McGill, L.A., Reeves, T. & McLeod, M.G. 1977. Chromosome numbers in some cacti of western North America. Bull. Torrey Bot. Club 104: 105–110. https://doi.org/10.2307/2419140 Pitrez, S.R., Ramalho, F.C., de Andrade, L.A., Cordeiro, J.M.P., de Assis, F.N.M. & Felix, L.P. 2014. [Records]. In: Marhold, K. (ed.), IAPT/IOPB chromosome data 18. Taxon 63: 1390–1391, E20–E24. https://doi.org/10.12705/636.37 Rice, A., Smarda, P., Novosolov, M., Drori, M., Glick, L., Sabath, N., Meiri, S., Belmaker, J. & Mayrose, I. 2019. The global biogeography of polyploid plants. Nature Ecol. Evol. 3: 265–273. https://doi.org/10.1038/s41559-018-0787-9 Taylor, N.P. & Zappi, D. 2004. Cacti of eastern Brazil. Richmond: Royal Botanic Gardens, Kew. Wachsmuth, M., Caudron-Herger, M. & Rippe, K. 2008. Genome organization: Balancing stability and plasticity. Biochim. Biophys. Acta 1783: 2061–2079. https://doi.org/10.1016/j.bbamcr.2008.07.022 Zappi, D.C., Taylor, N. & Ribeiro-Silva, S. 2011. Plano de ação nacional para a conservação das Cactáceas. Quatro Barras: Chico Mendes Institute for Biodiversity Conservation. *Address for correspondence: [email protected] The work was done within the research project 21T-1F132 “Biomorphological and palyno-karyological analysis of some wild and cultivated fruit plants of Armenia (Rosaceae: Malus, Prunus, Pyrus) and their conservation” supported by the Science Committee of the Ministry of Education, Science, Culture and Sports of the Republic of Armenia. All materials were fixed from seedlings produced from the living collection “Flora and Vegetation of Armenia” of the A. Takhtajan Institute of Botany of the National Academy of Sciences of the Republic of Armenia. * First chromosome count for the taxon. Pyrus caucasica Fed. 2n = 34, CHN. Armenia, Ararat Province, hills in the vicinity of village Getazat, 930 m, 40°02′18″N, 44°33′49″E, 03 Jul 2022, J.A. Akopian, G.S. Gabrielyan, A.V. Rudov & G.M. Zaroyan s.n. (ERE 291412). *Pyrus ×daralagezii Mulk. 2n = 34, CHN. Armenia, Vayots Dzor Province, in the vicinity of village Kechut, in the forest along the road, 2072 m, 39°49′21″N, 45°40′38″E, 23 May 2019, J.A. Akopian, A.G. Ghukasyan, M.E. Oganesian & Zh.H. Hovakimyan s.n. (ERE 201408). *Pyrus hyrcana var. yeghegisi Akopian 2n = 34, CHN. Armenia, Vayots Dzor Province, Yeghegis river gorge, in the vicinity of village Vardahovit, near open woodland, 1970 m asl, 39°53′N, 45°27′E, 11 Aug 2019, J.A. Akopian, A.G. Ghukasyan & M.E. Oganesian s.n. (ERE 199486). *Pyrus medvedevii Rubtzov 2n = 34, CHN. Armenia, Vayots Dzor Province, right bank of the river Yeghegis, in the vicinity of village Vardahovit, 2000 m, 39°53′52″N, 45°28′12″E, 11 Aug 2019, J.A. Akopian, A.G. Ghukasyan & M.E. Oganesian s.n. (ERE 201409). *Pyrus oxyprion Woronow 2n = 34, CHN. Armenia, Ararat Province, in the vicinity of village Narek, 1030 m, 39°59′57″N, 44°39′58″E, 18 Jun 2017, J.A. Akopian, Zh.H. Hovakimyan & Z.M. Paravyan s.n. (ERE 201411). *Pyrus takhtadzhianii Fed. 2n = 34, CHN. Armenia, Vayots Dzor Province, Noravank gorge, 1480 m asl, 39°41′07″N, 45°13′50″E, 26 Aug 2018, J.A. Akopian, N. Korotkova, G. Parolly & Z. Asanidze s.n. (ERE 201410). *Address for correspondence: [email protected] This study was supported by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), and INSA (Instituto Nacional do Semiárido). * First chromosome count for the species Malvastrum coromandelianum (L.) Garcke 2n = 24, CHN. Brazil, Paraíba, Areia, 06°58′12″S, 35°42′15″W, 27 Sep 2018, J.M.P Cordeiro 1389 (EAN) [Fig. 5A]. Sida acuta Burm.f. 2n = 28, CHN. Brazil, Paraíba, Areia, 06°58′12″S, 35°42′15″W, 27 Sep 2018, J.M.P. Cordeiro 1387 (EAN) [Fig. 5B]. *Sida castanocarpa Krapov. 2n = 16, CHN. Brazil, Piauí, Parnaíba, 03°04′07″S, 41°46′42″W, 22 Jul 2018, L.P. Felix 17632 (EAN) [Fig. 5C]. Sida cordifolia L. 2n = 28, CHN. Brazil, Paraíba, Sertãozinho, 06°44′06″S, 35°27′30″W, 14 Jun 2019, J.M.P. Cordeiro 1472 (EAN) [Fig. 5D]. *Sida galheirensis Ulbr. 2n = 14, CHN. Brazil, Paraíba, Arara, 06°54′07″S, 35°47′42″W, 26 Mar 2021, J.M.P. Cordeiro 1498 (EAN) [Fig. 5E]. Sida glomerata Cav. 2n = 14, CHN. Brazil, Paraíba, Areia, 06°58′12″S, 35°42′15″W, 27 Sep 2018, J.M.P. Cordeiro 1388 (EAN) [Fig. 5F]. Sida jussiaeana DC. 2n = 16, CHN. Brazil, Paraíba, Sertãozinho, 06°44′06″S, 35°27′30″W, 14 Jun 2019, J.M.P. Cordeiro 1468 (EAN) [Fig. 5G]. Sida rhombifolia L. 2n = 14, CHN. Brazil, Paraíba, Areia, 06°58′12″S, 35°42′15″W, 27 Sep 2018, J.M.P. Cordeiro 1390 (EAN) [Fig. 5H]. 2n = 28, CHN. Brazil, Paraíba, Areia, 06°58′12″S, 35°42′15″W, 27 Sep 2018, J.M.P. Cordeiro 1391 (EAN) [Fig. 5I]. *Sidastrum multiflorum (Jacq.) Fryxell 2n = 32, CHN. Brazil, Paraíba, Sertãozinho, 06°44′06″S, 35°27′30″W, 20 Jul 2021, J.M.P Cordeiro 1526 (EAN) [Fig. 5J]. Sidastrum paniculatum (L.) Fryxell 2n = 16, CHN. Brazil, Paraíba, Areia, 06°58′12″S, 35°42′15″W, 20 Jul 2021, L.P Felix 17645 (EAN) [Fig. 5K]. The Malvaceae family is composed of approximately 244 genera and 4465 species (Christenhusz & Byng, 2016; WFO, 2022), subdivided into nine subfamilies: Bombacoideae, Brownlowioideae, Byttnerioideae, Dombeyoideae, Grewioideae, Helicteroideae, Malvoideae, Sterculioideae and Tilioideae. Within the genera of the Malvoideae, some of them stand out due to the number of species they contain, Malvastrum (153), Sida (1248), and Sidastrum (7) (WFO, 2022). From the cytogenetic point of view, species from the genus Malvastrum possess chromosome numbers n = 6, 12, 18 and 2
Referência(s)