Artigo Acesso aberto Revisado por pares

Effect of automated head-thorax elevation during chest compressions on lung ventilation: a model study

2023; Nature Portfolio; Volume: 13; Issue: 1 Linguagem: Inglês

10.1038/s41598-023-47727-z

ISSN

2045-2322

Autores

Hélène Duhem, Nicolas Terzi, Nicolas Segond, Alexandre Bellier, Caroline Sánchez, Bruno Louis, Guillaume Debaty, Claude Guérin,

Tópico(s)

Cardiac Arrest and Resuscitation

Resumo

Our goal was to investigate the effects of head-thorax elevation (HUP) during chest compressions (CC) on lung ventilation. A prospective study was performed on seven human cadavers. Chest was automatically compressed-decompressed in flat position and during progressive HUP from 18 to 35°. Lung ventilation was measured with electrical impedance tomography. In each cadaver, 5 sequences were randomly performed: one without CC at positive end-expiratory pressure (PEEP) 0cmH2O, 3 s with CC at PEEP0, 5 or 10cmH2O and 1 with CC and an impedance threshold device at PEEP0cmH2O. The minimal-to-maximal change in impedance (VTEIT in arbitrary unit a.u.) and the minimal impedance in every breathing cycle (EELI) the) were compared between flat, 18°, and 35° in each sequence by a mixed-effects model. Values are expressed as median (1st-3rd quartiles). With CC, between flat, 18° and 35° VTEIT decreased at each level of PEEP. It was 12416a.u. (10,689; 14,442), 11,239 (7667; 13,292), and 6457 (4631; 9516), respectively, at PEEP0. The same was true with the impedance threshold device. EELI/VTEIT significantly decreased from - 0.30 (- 0.40; - 0.15) before to - 1.13 (- 1.70; - 0.61) after the CC (P = 0.009). With HUP lung ventilation decreased with CC as compared to flat position. CC are associated with decreased in EELI.

Referência(s)