Science of Cloud and Climate Science: An Analysis of the Literature Over the Past 50 Years
2023; American Geophysical Union; Linguagem: Inglês
10.1002/9781119700357.ch1
ISSN2328-8779
AutoresSylvia Sullivan, Corinna Hoose,
Tópico(s)Atmospheric chemistry and aerosols
ResumoChapter 1 Science of Cloud and Climate Science: An Analysis of the Literature Over the Past 50 Years Sylvia C. Sullivan, Sylvia C. Sullivan [email protected] Department of Chemical & Environmental Engineering, and Department of Hydrology & Atmospheric Science, University of Arizona, Tucson, AZ, USASearch for more papers by this authorCorinna Hoose, Corinna Hoose Institute of Meteorology & Climate Research, Karlsruhe Institute of Technology, Karlsruhe, GermanySearch for more papers by this author Sylvia C. Sullivan, Sylvia C. Sullivan [email protected] Department of Chemical & Environmental Engineering, and Department of Hydrology & Atmospheric Science, University of Arizona, Tucson, AZ, USASearch for more papers by this authorCorinna Hoose, Corinna Hoose Institute of Meteorology & Climate Research, Karlsruhe Institute of Technology, Karlsruhe, GermanySearch for more papers by this author Book Editor(s):Sylvia C. Sullivan, Sylvia C. SullivanSearch for more papers by this authorCorinna Hoose, Corinna HooseSearch for more papers by this author First published: 15 December 2023 https://doi.org/10.1002/9781119700357.ch1Citations: 1Book Series:Geophysical Monograph Series AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary Clouds pose a particularly difficult challenge within Earth's climate system. They are relatively small in spatiotemporal scale but still have a strong influence on radiative fluxes, global circulation, and precipitation patterns. Increasing research attention has been devoted to them over the past 50 years, and we give a summary of the resulting body of scientific literature in this introductory chapter. Articles on clouds and climate are doubling every 8 years, a rate about twice that of scientific publications generally. This expanding number of publications correlates with more citations, but citation rates have also slowed in the most recent decade, despite a growing number of atmospheric science students. We show some basic “science of science” (SciSci) analyses of the clouds and climate literature, such as authorship networks or abstract text mining for techniques, and suggest that further SciSci analyses may help us to process the proliferation of results on clouds and climate and optimize how we do research in the crucial years ahead. References Boucher , O. , Randall , D. , Artaxo , P. , Bretherton , C. , Feingold , G. , Forster , P. , et al. ( 2013 ). Clouds and aerosols . In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change . Cambridge, UK : Cambridge University Press . 10.1007/s40641-015-0010-x Google Scholar Douville , H. , Raghavan , K. , Renwick , J. , Allan , R. P. , Arias , P. A. , Barlow , M. , et al. ( 2021 ). Water cycle changes . In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change . Cambridge, UK : Cambridge University Press . Google Scholar Forster , P. , Storelvmo , T. , Armour , K. , Collins , W. , Dufresne , J.-L. , Frame , D. , et al. ( 2021 ). The Earth's energy budget, climate feedbacks, and climate sensitivity . In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change . Cambridge, UK : Cambridge University Press . Google Scholar Fortunato , S. , Bergstrom , C. T. , Börner , K. , Evans , J. A. , Helbing , D. , Milojević , S. , et al ( 2018 ). Science of science . Science , 359 ( 6379 ), eaao0185 . doi: 10.1126/science.aao0185 10.1126/science.aao0185 PubMedWeb of Science®Google Scholar Foster , J. G. , Rzhetsky , A. , & Evans , J. A. ( 2015 ). Tradition and innovation in scientists' research strategies . American Sociological Review , 80 ( 5 ), 875 – 908 . doi: 10.1177/0003122415601618 10.1177/0003122415601618 Web of Science®Google Scholar Geerts , B. ( 1999 ). Trends in atmospheric science journals: A reader's perspective . Bulletin of the American Meteorological Society , 80 , 639 – 652 . 10.1175/1520-0477(1999)080 2.0.CO;2 Web of Science®Google Scholar Gettelman , A. , Carmichael , G. R. , Feingold , G. , Silva , A. M. D. , & van den Heever , S. C. ( 2021 ). Confronting future models with future satellite observations of clouds and aerosols . Bulletin of the American Meteorological Society , 102 ( 8 ), E1557 – E1562 . doi: 10.1175/BAMS-D-21-0029.1 10.1175/BAMS-D-21-0029.1 Web of Science®Google Scholar Gettelman , A. , Chen , J. , & Gagne , D. J. ( 2020 ). Machine learning rain formation and impacts on clouds, precipitation, and radiation. In EGU General Assembly Conference Abstracts , 4636. Google Scholar Illingworth , A. J. , Barker , H. W. , Beljaars , A. , Ceccaldi , M. , Chepfer , H. , Clerbaux , N. , et al. ( 2015 ). The EarthCARE satellite: The next step forward in global measurements of clouds, aerosols, precipitation, and radiation . Bulletin of the American Meteorological Society , 96 ( 8 ), 1311 – 1332 . 10.1175/BAMS-D-12-00227.1 Web of Science®Google Scholar Landhuis , E. ( 2016 ). Scientific literature: Information overload . Nature , 535 , 457 – 458 . 10.1038/nj7612-457a PubMedWeb of Science®Google Scholar Llerena , C. , Müller , D. , Adams , R. , Davey , N. , & Sun , Y. ( 2018 ). Estimation of microphysical parameters of atmospheric pollution using machine learning . In Lecture Notes in Computer Science Book Series (LNTCS, vol. 11139). (pp. 579–588). International Conference on Artificial Neural Networks (ICANN), Springer. 10.1007/978-3-030-01418-6_57 Google Scholar Milojević, S. ( 2015 ). Quantifying the cognitive extent of science . Journal of Information , ( 9 ), 962 – 973 . doi: 110.1016/j.joi.2015.10.005 Google Scholar Morrison , H. , van Lier-Walqui , M. , Kumjian , M. R. , & Prat , O. P. ( 2019 ). A Bayesian approach for statistical-physical bulk parameterization microphysics. Part I: Scheme description . Journal of Climate , 77 , 1019 – 1041 . doi: 10.1175/JCLI-D-19-0070.1 Google Scholar Price , D. J. S. ( 1963 ). Little science, big science . New York, NY : Columbia University Press . 10.7312/pric91844 Google Scholar Price , D. J. S. ( 1965 ). Networks of scientific papers . Science , 149 ( 3638 ), 510 – 515 . doi: 10.1126/science.149.3683.510 10.1126/science.149.3683.510 CASPubMedGoogle Scholar Seifert , A. , & Rasp , S. ( 2020 ). Potential and limitations of machine learning for modeling warm-rain cloud microphysical processes . Journal of Advances in Modeling Earth Systems , 12 ( 12 ), e2020MS002301 . doi: 10.1029/2020MS002301 10.1029/2020MS002301 Web of Science®Google Scholar Stevens , B. , Acquistaoace , C. , Hansen , A. , Heinze , R. , Klinger , C. , Klocke , D. , et al. ( 2020 ). The added value of large-eddy and storm-resolving models for simulating clouds and precipitation . Journal of the Meteorological Society of Japan , 98 , 395 – 435 . doi: 10.2151/jmsj.2020-021 10.2151/jmsj.2020-021 Web of Science®Google Scholar Webb , M. J. , Andrews , T. , Bodas-Salcedo , A. , Bony , S. , Bretherton , C. S. , Chadwick , R. , et al. ( 2017 ). The cloud feedback model intercomparison project (CFMIP) contribution to CMIP6 . Geoscientific Model Development , 10 ( 1 ), 359 – 384 . 10.5194/gmd-10-359-2017 CASWeb of Science®Google Scholar Citing Literature Clouds and Their Climatic Impacts: Radiation, Circulation, and Precipitation Find out more about this book in this Q&A with the Editors ReferencesRelatedInformation
Referência(s)