Multi-objective topology optimization of heat transfer surface using level-set method and adaptive mesh refinement in OpenFOAM
2023; Elsevier BV; Volume: 221; Linguagem: Inglês
10.1016/j.ijheatmasstransfer.2023.125099
ISSN1879-2189
AutoresDi Chen, Prashant Kumar, Yukinori Kametani, Yosuke Hasegawa,
Tópico(s)Heat Transfer and Optimization
ResumoThe present study proposes a new efficient and robust algorithm for multi-objectives topology optimization of heat transfer surfaces to achieve heat transfer enhancement with a less pressure drop penalty based on a continuous adjoint approach. It is achieved with a customized OpenFOAM solver, which is based on a volume penalization method for solving a steady and laminar flow around iso-thermal solid objects with arbitrary geometries. The fluid-solid interface is captured by a level-set function combined with a newly proposed robust reinitialization scheme ensuring that the interface diffusion is always kept within a single local grid spacing. Adaptive mesh refinement is applied in near-wall regions automatically detected by the level-set function to keep high resolution locally, thereby reduces the overall computational cost for the forward and adjoint analyses. The developed solver is first validated in a drag reduction problem of a flow around a two-dimensional cylinder at the Reynolds numbers of 10 and 40 by comparing reference data. Then, the proposed scheme is extended to heat transfer problems in a two-dimensional flow at the Prandtl number of 0.7 and 6.9. Finally, three-dimensional topology optimization for multi-objective problems is considered for cost functionals with different weights for the total drag and heat transfer. Among various solutions obtained on the Pareto front, 4.0% of heat transfer enhancement with 12.6% drag reduction is achieved at the Reynolds number of 10 and the Prandtl number of 6.9. Moreover, the optimization of a staggered pin-fin array demonstrates that the optimal shapes and arrangement of the fins strongly depend on the number of rows from the inlet. Specifically, the pin-fins in the first and third rows extended in the upstream direction further enhance heat transfer, while the fins in the second row vanish to reduce pressure loss.
Referência(s)