Artigo Revisado por pares

Intestinal Bile Acid Transport: Biology, Physiology, and Pathophysiology

2001; Lippincott Williams & Wilkins; Volume: 32; Issue: 4 Linguagem: Inglês

10.1002/j.1536-4801.2001.tb07287.x

ISSN

1536-4801

Autores

Benjamin L. Shneider,

Tópico(s)

Digestive system and related health

Resumo

Journal of Pediatric Gastroenterology and NutritionVolume 32, Issue 4 p. 407-417 Invited Review Intestinal Bile Acid Transport: Biology, Physiology, and Pathophysiology Benjamin L. Shneider, Corresponding Author Benjamin L. Shneider n/[email protected] Mount Sinai School of Medicine, New York, New YorkAddress correspondence and reprint requests to Dr. Benjamin Shneider, Mount Sinai Medical Center, Box 1656, One Gustave L. Levy Place, New York, NY 10029.Search for more papers by this author Benjamin L. Shneider, Corresponding Author Benjamin L. Shneider n/[email protected] Mount Sinai School of Medicine, New York, New YorkAddress correspondence and reprint requests to Dr. Benjamin Shneider, Mount Sinai Medical Center, Box 1656, One Gustave L. Levy Place, New York, NY 10029.Search for more papers by this author First published: 01 April 2001 https://doi.org/10.1002/j.1536-4801.2001.tb07287.xCitations: 17 This work was supported by grants from the National Institutes of Health (DK 02076 and DK 54165), Bethesda, MD. Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat REFERENCES 1Russell DW, Setchell KDR. Bile acid biosynthesis. Biochemistry 1992; 31: 4737–49. 10.1021/bi00135a001 CASPubMedWeb of Science®Google Scholar 2Setchell KD, Suchy FJ, Welsh MB, et al. Delta 4-3-oxosteroid 5 beta-reductase deficiency described in identical twins with neonatal hepatitis. A new inborn error in bile acid synthesis. J Clin Invest 1988; 82: 2148–57. 10.1172/JCI113837 CASPubMedWeb of Science®Google Scholar 3Jacquemin E, Setchell KDR, O'Connell NC, et al. A new cause of progressive intrahepatic cholestasis: 3β-hydroxy-C27-steroid dehydrogenase/isomerase deficiency. J Pediatr 1994; 125: 379–84. 10.1016/S0022-3476(05)83280-9 CASPubMedWeb of Science®Google Scholar 4Setchell KDR, Schwarz M, O'Connell NC, et al. Identification of a new inborn error in bile acid synthesis: Mutation of the oxysterol 7α-hydroxylase gene causes severe neonatal liver disease. J Clin Invest 1998; 102: 1690–1703. 10.1172/JCI2962 CASPubMedWeb of Science®Google Scholar 5Ishibashi S, Schwarz M, Frykman PK, et al. Disruption of cholesterol 7α-hydroxylase gene in mice. Postnatal lethality reversed by bile acid and vitamin supplementation. J Biol Chem 1996; 271: 18017–23. 10.1074/jbc.271.30.18017 CASPubMedWeb of Science®Google Scholar 6Buchwald H, Varco RL, Matts JP, et al. Effect of partial ileal bypass surgery on mortality and morbidity from coronary heart disease in patients with hypercholesterolemia. Report of the program on the surgical control of the hyperlipidemias (POSCH). N Engl J Med 1990; 323: 946–55. 10.1056/NEJM199010043231404 CASPubMedWeb of Science®Google Scholar 7Amelsberg A, Schteingart CD, Ton-Nu H, et al. Carrier-mediated jejunal absorption of conjugated bile acids in the guinea pig. Gastroenterology 1996; 110: 1098–106. 10.1053/gast.1996.v110.pm8612999 CASPubMedWeb of Science®Google Scholar 8Amelsberg A, Jochims C, Richter CP, et al. Evidence for an anion exchange mechanism for uptake of conjugated bile acid from the rat jejunum. Am J Physiol 1999; 276: G737–42. 10.1152/ajpgi.1999.276.3.G737 CASPubMedGoogle Scholar 9Walters H, Craddock A, Fusegawa H, et al. Expression, transport properties and chromosomal localization of organic anion transporter subtype 3. Am J Physiol 2000; 279: G1188–1200. 10.1152/ajpgi.2000.279.6.G1188 CASPubMedWeb of Science®Google Scholar 10Wong MH, Oelkers P, Craddock AL, et al. Expression cloning and characterization of the hamster ileal sodium-dependent bile acid transporter. J Biol Chem 1994; 269: 1340–47. 10.1016/S0021-9258(17)42263-0 CASPubMedWeb of Science®Google Scholar 11Shneider BL, Dawson PA, Christie DM, et al. Cloning and molecular characterization of the ontogeny of a rat ileal sodium-dependent bile acid transporter. J Clin Invest 1995; 95: 745–54. 10.1172/JCI117722 CASPubMedWeb of Science®Google Scholar 12Sacchettini JC, Hauft SM, Van Camp SL, et al. Developmental and structural studies of an intracellular lipid binding protein expressed in the ileal epithelium. J Biol Chem 1990; 265 (31): 19199–207. 10.1016/S0021-9258(17)30644-0 CASPubMedWeb of Science®Google Scholar 13Hagenbuch B, Stieger B, Foguet M, et al. Functional expression cloning and characterization of the hepatocyte Na+/bile acid cotransport system. Proc Natl Acad Sci (USA) 1991; 88 (23): 10629–33. 10.1073/pnas.88.23.10629 CASPubMedWeb of Science®Google Scholar 14Craddock A, Love M, Daniel R, et al. Expression and transport properties of the human ileal and renal sodium-dependent bile acid transporter. Am J Physiol 1998; 274: G157–69. 10.1152/ajpgi.1998.274.1.G157 CASPubMedWeb of Science®Google Scholar 15Christie DM, Dawson PA, Thevananther S, et al. Comparative analysis of the ontogeny of a sodium-dependent bile acid transporter in rat kidney and ileum. Am J Physiol 1996; 271: G377–385. CASPubMedWeb of Science®Google Scholar 16Alpini G, Glaser SS, Rodgers R, et al. Functional expression of the apical Na+-dependent bile acid transporter in large but not small rat cholangiocytes. Gastroenterology 1997; 113: 1734–1740. 10.1053/gast.1997.v113.pm9352879 CASPubMedWeb of Science®Google Scholar 17Lazaridis K, Pham L, Tietz, et al. Rat cholangiocytes absorb bile acids at their apical domain via the ileal sodium-dependent bile acid transporter. J Clin Invest 1997; 100: 2714–2721. 10.1172/JCI119816 CASPubMedWeb of Science®Google Scholar 18Lazaridis K, Tietz P, Wu T, et al. Alternative splicing of the rat sodium/bile acid transporter changes its cellular localization and transport properties. Proc Natl Acad Sci (USA) 2000; 97: 11092–11097. 10.1073/pnas.200325297 CASPubMedWeb of Science®Google Scholar 19Sun A-Q, Ananthanaryanan M, Soroka CJ, et al. Sorting of rat liver and ileal sodium-dependent bile acid transporters in polarized epithelial cells. Am J Physiol 1998; 275: G1045–1055. 10.1152/ajpgi.1998.275.5.G1045 CASPubMedWeb of Science®Google Scholar 20Crossman MW, Hauft SH, Gordon JI. The mouse ileal lipid-binding protein gene: a model for studying axial patterning during gut morphogenesis. J Cell Biol 1994; 126: 1547–1564. 10.1083/jcb.126.6.1547 CASPubMedWeb of Science®Google Scholar 21Weinmann SA, Carruth MW, Dawson PA. Bile acid uptake via the human apical sodium-bile acid cotransporter is electrogenic. J Biol Chem 1998; 273: 34691–34695. 10.1074/jbc.273.52.34691 PubMedWeb of Science®Google Scholar 22Heubi JE, Balistreri WF, Fondacaro JD, et al. Primary bile acid malabsorption: defective in vitro ileal active bile acid transport. Gastroenterology 1982; 83: 804–811. 10.1016/S0016-5085(82)80009-7 CASPubMedWeb of Science®Google Scholar 23Oelkers P, Kirby LC, Heubi JE, et al. Primary bile acid malabsorption caused by mutations in the ileal sodium-dependent bile acid transporter gene (SLC10A2). J Clin Invest 1997; 99: 1880–1887. 10.1172/JCI119355 CASPubMedWeb of Science®Google Scholar 24Lewis MC, Root C. In vivo transport kinetics and distribution of taurocholate by rat ileum and jejunum. Am J Physiol 1990; 259: G233–238. CASPubMedWeb of Science®Google Scholar 25Nicolas C, Mergey M, Veissiere D, et al. Bile acid transport and regulating functions in human biliary epithelium [abstract]. Hepatology 2000; 32: 433A. PubMedWeb of Science®Google Scholar 26Dawson P, Montagnani M, Fusegawa H, et al. Identification of a dysfunctional ileal bile acid transporter gene in a patient with pigment gallstones [abstract]. Hepatology 2000; 32: 434A. Web of Science®Google Scholar 27Balistreri WF, Suchy FJ, Heubi JE. Serum bile acid response to a test meal stimulus: a sensitive test of ileal function. J Pediatr 1980; 96(3 Pt 2): 582–589. 10.1016/S0022-3476(80)80870-5 CASPubMedWeb of Science®Google Scholar 28Heubi J, Balistreri W, Partin J, et al. Refractory infantile diarrhea due to primary bile acid malabsorption. J Pediatr 1979; 94: 546–551. 10.1016/S0022-3476(79)80008-6 CASPubMedWeb of Science®Google Scholar 29van Tilburg AJ, de Rooij FW, van Blankenstein M, et al. Na+-dependent bile acid transport in the ileum: the balance between diarrhea and constipation. Gastroenterology 1990; 98: 25–32. 10.1016/0016-5085(90)91286-F PubMedWeb of Science®Google Scholar 30Galatola G, Jazrawi R, Bridges C, et al. Direct measurement of first-pass ileal clearance of a bile acid in humans. Gastroenterology 1991; 100: 1100–1105. 10.1016/0016-5085(91)90288-V CASPubMedWeb of Science®Google Scholar 31Bile acids, diarrhoea, and SeHCAT. Lancet 1991; 338: 1563–1564. 10.1016/0140-6736(91)92380-K CASPubMedWeb of Science®Google Scholar 32Eusufzai S, Axelson M, Angelin B, et al. Serum 7α-hydroxy-4-cholesten-3-one concentrations in the evaluation of bile acid malabsorption in patients with diarrhoea: correlation fo SeHCAT test. Gut 1993; 34: 698–701. 10.1136/gut.34.5.698 CASPubMedWeb of Science®Google Scholar 33Sauter G, Munzing W, von Ritter C, et al. Bile acid malabsorption as a cause of chronic diarrhea. Diagnostic value of 7α-hydroxy-4-cholesten-3-one in serum. Dig Dis Sci 1999; 44: 14–19. 10.1023/A:1026681512303 CASPubMedWeb of Science®Google Scholar 34Shneider BL. A new era in bile acid transport pathophysiology. J Pediatr Gastroenterol Nutr 1998; 26: 236–237. 10.1097/00005176-199802000-00025 CASPubMedWeb of Science®Google Scholar 35Wong MH, Oelkers P, Dawson PA. Identification of a mutation in the ileal sodium-dependent bile acid transporter gene that abolishes transport activity. J Biol Chem 1995; 270 (45): 27228–27234. 10.1074/jbc.270.45.27228 CASPubMedWeb of Science®Google Scholar 36Shih DQ, et al. Hepatocyte nuclear factor-1α is an essential regulator of bile acid and plasma cholesterol metabolism. Nature Genetics 2001; 27: 375. 10.1038/86871 CASPubMedWeb of Science®Google Scholar 37Merrick M, Eastwood M, Ford M. Is bile acid malabsorption underdiagnosed? An evaluation of accuracy of diagnosis by measurement of SeHCAT retention. Br Med J 1985; 290: 665–668. 10.1136/bmj.290.6469.665 CASPubMedWeb of Science®Google Scholar 38Popovic O, Kostic K, Milovic V, et al. Primary bile acid malabsorption. Histologic and immunologic study in three patients. Gastroenterology 1987; 92: 1851–1858. 10.1016/0016-5085(87)90615-9 CASPubMedWeb of Science®Google Scholar 39Thaysen E, Pedersen L. Idiopathic bile acid catharsis. Gut 1976; 17: 965–970. 10.1136/gut.17.12.965 CASPubMedWeb of Science®Google Scholar 40Williams A, Merrick M, Eastwood M. Idiopathic bile acid malabsorption - a review of clinical presentation, diagnosis, and response to treatment. Gut 1991; 32: 1004–1006. 10.1136/gut.32.9.1004 CASPubMedWeb of Science®Google Scholar 41Smith M, Cherian P, Raju G, et al. Bile acid malabsorption in persistent diarrhea. J R Coll Physicians Lond 2000; 34: 448–451. CASPubMedWeb of Science®Google Scholar 42Duane W. Abnormal bile acid absorption in familial hypertriglyceridemia. J Lipid Res 1995; 36: 96–107. 10.1016/S0022-2275(20)39758-3 CASPubMedWeb of Science®Google Scholar 43Duane W, Hartich L, Bartman A, et al. Diminished gene expression of ileal apical sodium bile acid transporter explains impaired absorption of bile acid in patients with hypertriglyceridemia. J Lipid Res 2000; 41: 1384–1389. 10.1016/S0022-2275(20)33450-7 CASPubMedWeb of Science®Google Scholar 44Nagengast F, Grubben M, van Muster I. Role of bile acids in colorectal carcinogenesis. Eur J Cancer 1995; 31A: 1067–1070. 10.1016/0959-8049(95)00216-6 CASPubMedWeb of Science®Google Scholar 45Kanamoto R, Azuma N, Suda H, et al. Elimination of Na+-dependent bile acid transporter from small intestine by ileum resection increases colonic tumorigenesis in the rat fed deoxycholic acid. Cancer Lett 1999; 18: 115–120. 10.1016/S0304-3835(99)00240-2 Google Scholar 46Heubi JE, Balistreri WF, Partin JC, et al, Suchy FJ. Enterohepatic circulation of bile acids in infants and children with ileal resection. J Lab Clin Med 1980; 95: 231–40. CASPubMedWeb of Science®Google Scholar 47Weber A, Roy C, Morin C, et al. Malabsorption of bile acids in children with cystic fibrosis. N Engl J Med 1973; 289: 1001–1005. 10.1056/NEJM197311082891903 CASPubMedWeb of Science®Google Scholar 48Ohkochci N, Andoh T, Izumi U, et al. Disorder of bile acid metabolism in children with short bowel syndrome. J Gastroenterol 1997; 32: 472–479. 10.1007/BF02934085 PubMedWeb of Science®Google Scholar 49Nyhlin H, Merrick M, Eastwood M. Bile acid malabsorption in Crohn's disease and indications for its assessment using SeHCAT. Gut 1994; 35: 90–93. 10.1136/gut.35.1.90 CASPubMedWeb of Science®Google Scholar 50Sciarretta G, Bonazzi L, Monti M, et al. Bile acid malabsorption in AIDS-associated chronic diarrhea: A prospective 1-year study. Am J Gastroenterol 1994; 89: 379–381. CASPubMedWeb of Science®Google Scholar 51Steuerwald M, Bucher HC, Muller-Brand J, et al. HIV-Enteropathy and Bile Acid Malabsorption: response to Cholestyramine. Am J Gastroenterol 1995; 90: 2051–2053. CASPubMedWeb of Science®Google Scholar 52Bjarnason I, Sharpstone D, Francis N, et al. Intestinal inflammation, ileal structure and function in HIV. AIDS 1996; 10: 1385–1391. 10.1097/00002030-199610000-00011 CASPubMedWeb of Science®Google Scholar 53Cramp M, Hing M, Marriott D, et al. Bile acid malabsorption in HIV infected patients with chronic diarrhea. Aust N Z J Med 1996; 26: 368–371. 10.1111/j.1445-5994.1996.tb01924.x CASPubMedWeb of Science®Google Scholar 54Niaz S, Sandrasegaran K, Renny F, et al. Postinfective diarrhoea and bile acid malabsorption. J R Coll Physicians Lond 1997; 31: 53–56. CASPubMedWeb of Science®Google Scholar 55Classen J, Belka C, Paulsen F, et al. Radiation-induced gastrointestinal toxicity. Pathophysiology, approaches to treatment and prophylaxis. Strahlenther Onkol 1998; 174(suppl 3): 82–84. PubMedGoogle Scholar 56O'Brien S, Mulcahy H, Fenlon H, et al. Intestinal bile acid malabsorption in cystic fibrosis. Gut 1993; 34: 1137–1141. 10.1136/gut.34.8.1137 PubMedWeb of Science®Google Scholar 57Fondacaro J, Heubi J, Kellogg F. Intestinal bile acid malabsorption in cystic fibrosis: a primary mucosal cell defect. Ped Research 1982; 16: 494–498. 10.1203/00006450-198206000-00019 CASPubMedWeb of Science®Google Scholar 58Tougaard L, Giese B, Pedersen B, et al. Bile acid metabolism in patients with Crohn's disease in terminal ileum. Scand J Gastroenterol 1986; 21: 627–633. 10.3109/00365528609003110 CASPubMedGoogle Scholar 59Sundaram U, Wisel S, Stengelin S, et al. Mechanism of inhibition of Na+-bile acid cotransport during chronic ileal inflammation in rabbits. Am J Physiol 1998; 275: G1259–1265. 10.1152/ajpgi.1998.275.6.G1259 CASPubMedWeb of Science®Google Scholar 60Wess G, Kramer W, Enhsen A, et al. Specific inhibitors of ileal bile acid transport. J Med Chem 1994; 37: 873–875. 10.1021/jm00033a001 CASPubMedWeb of Science®Google Scholar 61Hara S, Higaki J, Higashino K, et al. S-8921, an ileal Na+/bile acid cotransporter inhibitor decreases serum cholesterol in hamsters. Life Sci 1997; 60: 365–370. 10.1016/S0024-3205(97)00242-7 Web of Science®Google Scholar 62Root C, Smith C, Winegar D, et al. Inhibition of ileal sodium-dependent bile acid transport by 2164U90. J Lipid Res 1995; 36: 1106–1115. 10.1016/S0022-2275(20)39869-2 CASPubMedWeb of Science®Google Scholar 63Izzat N, Deshazer M, Loose-Mitchell D. New molecular targets for cholesterol-lowering therapy. J Pharmacol Exp Ther 2000; 293: 315–320. CASPubMedWeb of Science®Google Scholar 64Higaki J, Hara S, Takasu N, et al. Inhibition of ileal Na+/bile acid cotransporter by S-8921 reduces serum cholesterol and prevents atherosclerosis in rabbits. Arterioscler Thromb Vasc Biol 1998; 18: 1304–1311. 10.1161/01.ATV.18.8.1304 CASPubMedWeb of Science®Google Scholar 65Ichihashi T, Izawa M, Miyata K, et al. Mechanism of hypocholesterolemic action of S-8921 in rats: S-8921 inhibits ileal bile acid absorption. J Pharmacol Exper Ther 1998; 284: 43–50. CASPubMedWeb of Science®Google Scholar 66Lewis MC, Brieaddy LE, Root C. Effect of 2164U90 on ileal bile acid absorption and serum cholesterol in rats and mice. J Lipid Res 1995; 36: 1098–1105. 10.1016/S0022-2275(20)39868-0 CASPubMedWeb of Science®Google Scholar 67Whitington PF, Whitington GL. Partial external diversion of bile for the treatment of intractable pruritus associated with intrahepatic cholestasis. Gastroenterology 1988; 95: 130–136. 10.1016/0016-5085(88)90301-0 CASPubMedWeb of Science®Google Scholar 68Emond JC, Whitington PF. Selective surgical management of progressive intrahepatic cholestasis (Byler's disease). J Pediatr Surg 1995; 30: 1635–1641. 10.1016/0022-3468(95)90440-9 CASPubMedWeb of Science®Google Scholar 69Hollands CM, Rivera-Pedrogo J, Gonzalez-Vallina R, et al. Ileal exclusion for Byler's disease: an alternative surgical approach with promising early results for pruritus. J Pediatr Surg 1998; 33: 220–224. 10.1016/S0022-3468(98)90435-3 CASPubMedWeb of Science®Google Scholar 70Ng V, Ryckman F, Porta G, et al. Long-term outcome after partial external biliary diversion for intractable pruritus in patients with intrahepatic cholestasis. J Pediatr Gastroenterol Nutr 2000; 30: 152–156. 10.1097/00005176-200002000-00011 CASPubMedWeb of Science®Google Scholar 71Arrese M, Trauner M, Sacchiero RJ, et al. Neither intestinal sequestration of bile acids nor common bile duct ligation modulate the expression and function of the rat ileal bile acid transporter. Hepatology 1998; 28: 1081–1087. 10.1002/hep.510280424 CASPubMedWeb of Science®Google Scholar 72Chazouilleres O, Marteau P, Haniche M, et al. Ileal absorption of bile acids in patients with chronic cholestasis: SeHCAT test results and effect of ursodeoxycholic acid (UDCA). Dig Dis Sci 1996; 41: 2417–2422. 10.1007/BF02100137 CASPubMedWeb of Science®Google Scholar 73Coppola CP, Gosche JR, Arrese M, et al. Molecular analysis of the adaptive response of intestinal bile acid transport after ileal resection. Gastroenterology 1998; 115: 1172–1178. 10.1016/S0016-5085(98)70088-5 CASPubMedWeb of Science®Google Scholar 74Stelzner M, Somasundaram S, Kearney D. Distribution of bile acid transport capacities in the human ileum. Gastroenterology 2000; 118: A76. 10.1016/S0016-5085(00)82384-7 Web of Science®Google Scholar 75Stelzner M, Hoagland V, Somasundaram S. Distribution of bile acid absorption and bile acid transporter gene message in the hamster ileum. Eur J Physiol 2000; 440: 157–162. 10.1007/s004240000281 CASPubMedWeb of Science®Google Scholar 76Al-Ansari N, Kollman-Bauerly K, Ujhazy P, et al. Adaptive response of ileal bile acid transport after massive intestinal resection in the rat. J Pediatr Gastroenterol Nutr 2000; 31: S234. PubMedGoogle Scholar 77Coppola C, Xu G, Shefer S, et al. Proximal versus distal ileal resection reduces bile acid synthesis and pool size in the rat. Hepatology 1998; 28: 425A. Web of Science®Google Scholar 78Tsuchiya T, Kalogeris R, Tso P. Ileal transposition into the upper jejunum affects lipid and bile salt absorption in rats. Am J Physiol 1996; 271: G681–91. CASPubMedWeb of Science®Google Scholar 79de Belle R, Vaupshas V, Vitullo B, et al. Intestinal absorption of bile salts: immature development in the neonate. J Pediatr 1979; 94: 472–76. 10.1016/S0022-3476(79)80604-6 CASPubMedWeb of Science®Google Scholar 80Lester R, Smallwood R, Little J, et al. Fetal bile salt metabolism: the intestinal absorption of bile salt. J Clin Invest 1977; 59: 1009–1016. 10.1172/JCI108723 CASPubMedWeb of Science®Google Scholar 81Little J, Lester R. Ontogenesis of intestinal bile salt absorption in the neonatal rat. Am J Physiol 1980; 239: G319–323. CASPubMedWeb of Science®Google Scholar 82Barnard JA, Ghishan FK, Wilson FA. Ontogenesis of taurocholate transport by rat ileal brush border membrane vesicles. J Clin Invest 1985; 75: 869–873. 10.1172/JCI111785 CASPubMedWeb of Science®Google Scholar 83Moyer MS, Heubi JE, Goodrich AL, et al. Ontogeny of bile acid transport in brush border membrane vesicles from rat ileum. Gastroenterology 1986; 90(5 Pt 1): 1188–1196. 10.1016/0016-5085(86)90384-7 CASPubMedWeb of Science®Google Scholar 84Schwarz SM, Watkins JB, Ling SC. Taurocholate transport by brush-border membrane vesicles from the developing rabbit ileum: structure/function relationships. J Pediatr Gastroenterol Nutr 1990; 10: 482–89. 10.1097/00005176-199005000-00012 CASPubMedWeb of Science®Google Scholar 85Heubi J, Fondacaro J. Postnatal development of intestinal bile salt transport in the guinea pig. Am J Physiol 1982; 243: G189–194. CASPubMedWeb of Science®Google Scholar 86Barnard JA, Ghishan FK. Methylprednisolone accelerates the ontogeny of sodium-taurocholate cotransport in rat ileal brush border membranes. J Lab Clin Med 1986; 108: 549–555. CASPubMedWeb of Science®Google Scholar 87Heubi J. Role of thyroxine on postnatal development of ileal active bile salt transport. Am J Physiol 1986; 251: G237–242. CASPubMedGoogle Scholar 88Shneider BL, Michaud GA, West AB, et al. The effects of bile acid feeding on the development of ileal bile acid transport. Pediatr Res 1993; 33: 221–224. 10.1203/00006450-199303000-00002 CASPubMedWeb of Science®Google Scholar 89Shneider B, Setchell KDR, Crossman M. Fetal and perinatal expression of ileal and renal sodium-dependent bile acid transport in the rat. Pediatr Res 1997; 42: 189–194. 10.1203/00006450-199708000-00010 CASPubMedWeb of Science®Google Scholar 90Lillienau J, Crombie DL, Munoz J, et al. Negative feedback regulation of the ileal bile acid transport system in rodents. Gastroenterology 1993; 104: 38–46. 10.1016/0016-5085(93)90833-X CASPubMedWeb of Science®Google Scholar 91Higgins JV, Paul JM, Dumaswala R, et al. Downregulation of taurocholate transport by ileal BBM and liver BLM in biliary-diverted rats. Am J Physiol 1994; 267: G501–507. CASPubMedWeb of Science®Google Scholar 92Dumswala R, Berkowitz D, Heubi J. Adaptive response of the enterohepatic circulation of bile acids to extrahepatic cholestasis. Hepatology 1996; 23: 623–629. 10.1002/hep.510230330 PubMedWeb of Science®Google Scholar 93Stravitz RT, Sanyal AJ, Pandak WM, et al. Induction of sodium-dependent bile acid transporter messenger RNA, protein, and activity in rat ileum by cholic acid. Gastroenterology 1997; 113: 1599–1608. 10.1053/gast.1997.v113.pm9352862 CASPubMedWeb of Science®Google Scholar 94Sauer P, Stiehl A, Fitscher B, et al. Downregulation of ileal bile acid absorption in bile-duct-ligated rats. J Hepatol 2000; 33: 2–8. 10.1016/S0168-8278(00)80152-X CASPubMedWeb of Science®Google Scholar 95Torchia E, Cheema S, Agellon L. Coordinate regulation of bile acid biosynthetic and recovery pathways. Biochem Biophys Res Comm 1996; 225: 128–133. 10.1006/bbrc.1996.1141 CASPubMedWeb of Science®Google Scholar 96Ma L, Sehayek E, Breslow J, et al. Discoordinate regulation of the ileal bile acid transporter (ASBT) and bile acid binding protein (ILBP) in mouse ileum. Gastroenterology 2000; 118: A934. 10.1016/S0016-5085(00)85873-4 Web of Science®Google Scholar 97Xu G, Shneider B, Shefer S, et al. Ileal bile acid transport regulates bile acid pool, synthesis and plasma cholesterol levels differently in cholesterol-fed rats and rabbits. J Lipid Res 2000; 41: 298–304. 10.1016/S0022-2275(20)32064-2 CASPubMedWeb of Science®Google Scholar 98Repa J, Mangelsdorf D. The role of orphan nuclear receptors in the regulation of cholesterol homeostasis. Annu Rev Cell Dev Biol 2000; 16: 459–81. 10.1146/annurev.cellbio.16.1.459 CASPubMedWeb of Science®Google Scholar 99Makishima M, Okamoto A, Repa J, et al. Identification of a nuclear receptor for bile acids. Science 1999; 284: 1362–1365. 10.1126/science.284.5418.1362 CASPubMedWeb of Science®Google Scholar 100Parks D, Blanchard S, Bledsoe R, et al. Bile acids: natural ligands for an orphan nuclear receptor. Science 1999; 284: 1365–1368. 10.1126/science.284.5418.1365 CASPubMedWeb of Science®Google Scholar 101Grober J, Zaghini I, Fujii H, et al. Identification of a bile acid-responsive element in the human ileal bile acid-binding protein gene. Involvement of the farnesoid X receptor/9-cis-retinoic acid receptor heterodimer. J Biol Chem 1999; 274: 29749–54. 10.1074/jbc.274.42.29749 CASPubMedWeb of Science®Google Scholar 102Lu T, Makishima M, Repa J, et al. Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol Cell 2000; 6: 507–515. 10.1016/S1097-2765(00)00050-2 CASPubMedWeb of Science®Google Scholar 103Forman B, Goode E, Chen J, et al. Identification of a nuclear receptor that is activated by farnesol metabolites. Cell 1995; 81: 687–693. 10.1016/0092-8674(95)90530-8 CASPubMedWeb of Science®Google Scholar 104Lee H, Lee Y, Park S, et al. Structure and expression of the orphan nuclear receptor SHP gene. J Biol Chem 1998; 273: 14398–14402. 10.1074/jbc.273.23.14398 CASPubMedWeb of Science®Google Scholar 105Galarneau L, Pare J, Allard D, et al. The alpha-1-fetoprotein locus is activated by a nuclear receptor of the Drosophila FTZ-F1 family. Mol Cell Biol 1996; 16: 3853–3865. 10.1128/MCB.16.7.3853 CASPubMedWeb of Science®Google Scholar 106Sinal C, Tohkin M, Miyata M, et al. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell 2000; 102: 731–744. 10.1016/S0092-8674(00)00062-3 CASPubMedWeb of Science®Google Scholar 107Meihof W, Kern F. Bile acid malabsorption in regional ileitis, ileal resection and mannitol induce diarrhea. J Clin Invest 1968; 47: 261–267. 10.1172/JCI105722 PubMedWeb of Science®Google Scholar 108Wisel S, Sundaram U. Differential regulation of intestinal Na-bile acid co-transport in the normal and chronically inflammed ileum. Gastroenterology 2000; 118: A78. 10.1016/S0016-5085(00)82390-2 Web of Science®Google Scholar 109Nowicki M, Shneider B, Paul J, et al. Glucorticoids up-regulate taurocholate transport by the ileal brush border membrane. Am J Physiol 1997; 273: G197–203. 10.1152/ajpgi.1997.273.1.G197 CASPubMedWeb of Science®Google Scholar 110Wu GD, Chen L, Forslund K, et al. Hepatocyte nuclear factor-1α (HNF-1α) and HNF-1β regulate transcription via two elements in an intestine-specific promoter. J Biol Chem 1994; 269 (25): 17080–17085. 10.1016/S0021-9258(17)32523-1 CASPubMedWeb of Science®Google Scholar 111Fang R, Santiago NA, Olds LC, et al. The homeodomain protein Cdx2 regulates lactase gene promoter activity during enterocyte differentiation. Gastroenterology 2000; 118: 115–127. 10.1016/S0016-5085(00)70420-3 CASPubMedWeb of Science®Google Scholar 112Martin MG, Wang J, Solorzano-Vargas RS, et al. Regulation of the human Na(+)-glucose cotransporter gene, SGLT1, by HNF-1 and Sp1. Am J Physiol Gastrointest Liver Physiol 2000; 278: G591–603. 10.1152/ajpgi.2000.278.4.G591 CASPubMedWeb of Science®Google Scholar 113Lambert M, Colnot S, Suh E, et al. cis-Acting elements and transcription factors involved in the intestinal specific expression of the rat calbindin-D9K gene: binding of the intestine-specific transcription factor Cdx-2 to the TATA box. Eur J Biochem 1996; 236: 778–788. 10.1111/j.1432-1033.1996.00778.x CASPubMedWeb of Science®Google Scholar 114Lee S, Nagy B, Brooks A, et al. Members of the caudal family of homeodomain proteins repress transcriptional from the human apolipoprotein B promoter in intestinal cells. J Biol Chem 1996; 271: 707–718. 10.1074/jbc.271.2.707 CASPubMedWeb of Science®Google Scholar 115Kataoka H, Joh T, Miura Y, et al. AT motif binding factor 1-A (ATBF1-A) negatively regulates transcription of the aminopeptidase N gene in the crypt-villus axis of small intestine. Biochem Biophys Res Comm 2000; 267: 91–95. 10.1006/bbrc.1999.1911 CASPubMedWeb of Science®Google Scholar 116Hu C, Perlmutter DH. Regulation of alpha1-antitrypsin gene expression in human intestinal epithelial cell line Caco-2 by HNF-1alpha and HNF-4:I. Am J Physiol 1999

Referência(s)