Artigo Revisado por pares

Incorporation of N-doped biochar into submicron zero-valent iron for efficient peroxydisulfate activation in soil remediation: Performance and mechanism

2024; Elsevier BV; Volume: 482; Linguagem: Inglês

10.1016/j.cej.2024.148832

ISSN

1873-3212

Autores

Xinhua Wang, Peng Huang, Peng Zhang, Cuiping Wang, Hanzhong Jia, Hongwen Sun,

Tópico(s)

Arsenic contamination and mitigation

Resumo

The development of strategic methods to enhance the catalytic reactivity and electron efficiency of biochar-modified zero-valent iron (BC-ZVI) via mechanochemistry is highly important and desirable for the use of peroxydisulfate-based advanced oxidation processes (PDS-AOPs) in soil remediation. Herein, novel amphiphilic ball-milled N-doped biochar-ZVI composites (NBC-ZVIbm) were fabricated to activate PDS for efficient pyrene degradation in soil. The N-doped site- and alloying heterojunction-induced surface charge redistribution, directional electron transfer, and amphiphilicity of NBC-ZVIbm were verified, all of which improved the interactions among NBC-ZVIbm, PDS and pyrene. Specifically, NBC incorporation optimized PDS oxidation and pyrene adsorption on NBC-ZVIbm, forming a reaction center that efficiently accelerated the reaction. As a result, 95.5 % of 98.3 mg/kg pyrene in soil was degraded by NBC-ZVIbm/PDS within 7 d, which was 2.3 and 1.5 times greater than that of ball-milled ZVI and BC-ZVIbm, respectively; additionally, the electron efficiency of this process increased to 85.2 %. Characterization of the reaction process suggested that NBC incorporation induced directional electron transfer from ZVI to NBC for PDS activation and SO4•- generation. Subsequently, the amphiphilicity of NBC-ZVIbm promoted soil phase-pyrene desorption and migration, thereby increasing pyrene degradation. This NBC-incorporation method provides a strategy for constructing highly efficient ZVI-based catalysts for the use of PDS-AOPs in soil remediation.

Referência(s)
Altmetric
PlumX