α 1 ‐Antitrypsin Deficiency: From Genotype to Childhood Disease
1998; Lippincott Williams & Wilkins; Volume: 27; Issue: 1 Linguagem: Inglês
10.1002/j.1536-4801.1998.tb01102.x
ISSN1536-4801
AutoresN Mărcuş, Jeffrey Teckman, David H. Perlmutter,
Tópico(s)Peptidase Inhibition and Analysis
ResumoJournal of Pediatric Gastroenterology and NutritionVolume 27, Issue 1 p. 65-74 Invited Review α1-Antitrypsin Deficiency: From Genotype to Childhood Disease Nancy Marcus, Nancy Marcus Departments of Pediatrics, Cell Biology, St. Louis, Missouri, U.S.A. Division of Gastroenterology and Nutrition, St. Louis Children's Hospital, St. Louis, Missouri, U.S.A.Search for more papers by this authorJeffrey H. Teckman, Jeffrey H. Teckman Departments of Pediatrics, Cell Biology, St. Louis, Missouri, U.S.A. Division of Gastroenterology and Nutrition, St. Louis Children's Hospital, St. Louis, Missouri, U.S.A.Search for more papers by this authorDavid H. Perlmutter, Corresponding Author David H. Perlmutter n/[email protected] Departments of Pediatrics, Cell Biology, St. Louis, Missouri, U.S.A. Department of Physiology, Washington University School of Medicine, St. Louis, Missouri, U.S.A. Division of Gastroenterology and Nutrition, St. Louis Children's Hospital, St. Louis, Missouri, U.S.A.Address correspondence and reprint requests to Dr. D. H. Perlmutter, Department of Pediatrics, Washington University School of Medicine, One Children's Place, St. Louis, MO 63110, U.S.A.Search for more papers by this author Nancy Marcus, Nancy Marcus Departments of Pediatrics, Cell Biology, St. Louis, Missouri, U.S.A. Division of Gastroenterology and Nutrition, St. Louis Children's Hospital, St. Louis, Missouri, U.S.A.Search for more papers by this authorJeffrey H. Teckman, Jeffrey H. Teckman Departments of Pediatrics, Cell Biology, St. Louis, Missouri, U.S.A. Division of Gastroenterology and Nutrition, St. Louis Children's Hospital, St. Louis, Missouri, U.S.A.Search for more papers by this authorDavid H. Perlmutter, Corresponding Author David H. Perlmutter n/[email protected] Departments of Pediatrics, Cell Biology, St. Louis, Missouri, U.S.A. Department of Physiology, Washington University School of Medicine, St. Louis, Missouri, U.S.A. Division of Gastroenterology and Nutrition, St. Louis Children's Hospital, St. Louis, Missouri, U.S.A.Address correspondence and reprint requests to Dr. D. H. Perlmutter, Department of Pediatrics, Washington University School of Medicine, One Children's Place, St. Louis, MO 63110, U.S.A.Search for more papers by this author First published: 01 July 1998 https://doi.org/10.1002/j.1536-4801.1998.tb01102.x Submitted March 6, 1998 Read the full textAbout ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat No abstract is available for this article. REFERENCES 1Sveger T. Liver disease in α1-antitrypsin deficiency detected by screening of 200,000 infants. N Engl J Med 1976; 294: 1316–21. 10.1056/NEJM197606102942404 CASPubMedWeb of Science®Google Scholar 2Sveger T, Eriksson S. The liver in adolescents withα1-antitrypsin deficiency. Hepatology 1995; 22: 514–7. 10.1002/hep.1840220221 CASPubMedWeb of Science®Google Scholar 3Povey S. Genetics of α1-antitrypsin deficiency in relation to neonatal liver disease. Mol Biol Med 1990; 7: 161–2. CASPubMedWeb of Science®Google Scholar 4Lobo-Yeo A, Senaldi G, Portmann R, Mowat AP, Mieli-Vergani G, Vergani D. Class I and class II major histocompatibility complex antigen expression on hepatocytes: A study in children with liver disease. Hepatology 1990; 12: 224–32. 10.1002/hep.1840120208 CASPubMedWeb of Science®Google Scholar 5Teckman JH, Qu D, Perlmutter DH. Molecular pathogenesis of liver disease in α1-antitrypsin deficiency. Hepatology 1996; 24: 1504–16. 10.1002/hep.510240635 CASPubMedWeb of Science®Google Scholar 6Dycaico JM, Grant SGN, Felts K, et al. Neonatal hepatitis induced by α1-antitrypsin: A transgenic mouse model. Science 1988; 242: 1404–12. 10.1126/science.3264419 Web of Science®Google Scholar 7Carlson JA, Rogers BB, Sifers RN, et al. Accumulation of PiZ antitrypsin causes liver damage in transgenic mice. J Clin Invest 1988; 83: 1183–90. 10.1172/JCI113999 Web of Science®Google Scholar 8Hood JM, Koep LJ, Peters RL, et al. Liver transplantation for advanced liver disease with α1-antitrypsin deficiency. N Engl J Med 1980; 302: 272–6. 10.1056/NEJM198001313020505 CASPubMedWeb of Science®Google Scholar 9Perlmutter DH, Kay RM, Cole FS, Rossing TH, Van Thiel D, Colten HR. The cellular defect in α1-proteinase inhibitor deficiency is expressed in human monocytes and xenopus oocytes injected with human liver mRNA. Proc Natl Acad Sci USA 1985; 82: 6918–21. 10.1073/pnas.82.20.6918 CASPubMedWeb of Science®Google Scholar 10Brantly M, Courtney M, Crystal RG. Repair of the secretion of defect in the Z form of α1-antitrypsin by addition of a second mutation. Science 1988; 242: 1700–2. 10.1126/science.2904702 CASPubMedWeb of Science®Google Scholar 11McCracken AA, Kruse KB, Brown JL. Molecular basis for defective secretion of variants having altered potential for salt bridge formation between amino acids 240 and 242. Mol Cell Biol 1989; 9: 1408–14. 10.1128/MCB.9.4.1406 Web of Science®Google Scholar 12Sifers RN, Hardick CP, Woo SLC. Disruption of the 240-342 salt bridge is not responsible for the defect of the PIZα1-antitrypsin variant. J Biol Chem 1989; 264: 2997–3001. 10.1016/S0021-9258(19)81712-X CASPubMedWeb of Science®Google Scholar 13Wu Y, Foreman RC. The effect of amino acid substitutions at position 342 on the secretion of humanα1-antitrypsin from xenopus oocytes. FEBS Lett 1990; 268: 21–3. 10.1016/0014-5793(90)80962-I CASPubMedWeb of Science®Google Scholar 14Lomas DA, Evans DL, Finch JJ, Carrell RW. The mechanism of Z α1-antitrypsin accumulation in the liver. Nature 1992; 357: 605–7. 10.1038/357605a0 CASPubMedWeb of Science®Google Scholar 15Yu M-H, Lee KN, Kim J. The Z type variation of humanα1-antitrypsin causes a protein folding defect. Nat Struct Biol 1995; 2: 363–7. 10.1038/nsb0595-363 CASPubMedGoogle Scholar 16Bergeron JJM, Brenner MB, Thomas DY, Williams DB. Calnexin: A membrane-bond chaperone of the endoplasmic reticulum. Trends Biochem Sci 1994; 19: 124–8. 10.1016/0968-0004(94)90205-4 CASPubMedWeb of Science®Google Scholar 17Ou W-J, Cameron PH, Thomas DY, Bergeron JJM. Association of folding intermediates of glycoproteins with calnexin during protein maturation. Nature 1993; 364: 771–6. 10.1038/364771a0 CASPubMedWeb of Science®Google Scholar 18Sousa MC, Ferrero-Garcia MA, Parodi AJ. Recognition of the oligosaccharide and protein moieties of glycoproteins by the UDP-glucose: Glycoprotein glucosyltransferase. Biochemistry 1992; 310: 97–105. 10.1021/bi00116a015 Google Scholar 19Hebert DN, Foellmer B, Helenius A. Glucose trimming and reglucosylation determine glycoprotein association with calnexin in the endoplasmic reticulum. Cell 1995; 81: 425–53. 10.1016/0092-8674(95)90395-X CASPubMedWeb of Science®Google Scholar 20Rothman JE, Wieland FT. Protein sorting by transport vesicles. Science 1996; 272: 227–34. 10.1126/science.272.5259.227 CASPubMedWeb of Science®Google Scholar 21Bonifacino JS, Suzuki CK, Lippincott-Schwartz J, Weissman AM, Klausner RD. Pre-Golgi degradation of newly synthesized T-cell antigen receptor chains: Intrinsic sensitivity and the role of subunit assembly. J Cell Biol 1989; 109: 73–83. 10.1083/jcb.109.1.73 CASPubMedWeb of Science®Google Scholar 22Ward CL, Omura S, Kopito RR. Degradation of CFTR by the ubiquitin-proteasome pathway. Cell 1995; 83: 121–7. 10.1016/0092-8674(95)90240-6 CASPubMedWeb of Science®Google Scholar 23Jensen TJ, Loo MA, Pind S, Williams DB, Goldberg AL, Riordan JR. Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell 1995; 83: 129–35. 10.1016/0092-8674(95)90241-4 CASPubMedWeb of Science®Google Scholar 24Hershko A, Ciechanover A. The ubiquitin system for protein degradation. Annu Rev Biochem 1992; 61: 761–807. 10.1146/annurev.bi.61.070192.003553 CASPubMedWeb of Science®Google Scholar 25Qu D, Teckman TH, Omura S, Perlmutter DH. Degradation of mutant secretory protein, α1-antitrypsin Z, in the endoplasmic reticulum requires proteasome activity. J Biol Chem 1996; 271: 22791–5. 10.1074/jbc.271.37.22791 CASPubMedWeb of Science®Google Scholar 26Teckman JH, Marcus N, Perlmutter DH. Specific components of the ubiquitin system are required for intracellular degradation of mutant α1-antitrypsin Z (abstract). Gastroenterology 1998; 114: A1353 10.1016/S0016-5085(98)85493-0 PubMedWeb of Science®Google Scholar 27Werner ED, Brodsky JL, McCracken AA. Proteasome-dependent endoplasmic reticulum-associated protein degradation: An unconventional route to a familiar fate. Proc Natl Acad Sci USA 1996; 93: 13797–801. 10.1073/pnas.93.24.13797 CASPubMedWeb of Science®Google Scholar 28Liu Y, Choudhury P, Cabral CM, Sifers RN. Intracellular disposal of incompletely folded human α1-antitrypsin involves release from calnexin and post-translational trimming of asparagine-linked oligosaccharides. J Biol Chem 1997; 272: 7946–51. 10.1074/jbc.272.12.7946 CASPubMedWeb of Science®Google Scholar 29Wiertz EJHJ, Tortorella D, Bogyo M, Yu J, Mothes W, Jones TR. Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature 1996; 384: 432–8. 10.1038/384432a0 CASPubMedWeb of Science®Google Scholar 30McCracken AA, Brodsky JL. Assembly of ER-associated protein degradation in vitro: Dependence of cytosol, calnexin, and ATP. J Cell Biol 1996; 131: 291–8. 10.1083/jcb.132.3.291 Google Scholar 31Hiller MM, Finger A, Schweiger M, Wolf DH. ER degradation of a misfolded luminal protein by the cytosolic ubiquitin-proteasome pathway. Science 1996; 273: 1725–8. 10.1126/science.273.5282.1725 CASPubMedWeb of Science®Google Scholar 32Plemper RK, Bohmler S, Bordallo J, Sommer T, Wolf DH. Mutant analysis links the translocon and BiP to retrograde protein transport for ER degradation. Nature 1997; 388: 891–5. 10.1038/42276 CASPubMedWeb of Science®Google Scholar 33Biederer T, Volkwein C, Sommer T. Role of Cue1p in ubiquitination and degradation at the ER surface. Science 1997; 278: 1806–9. 10.1126/science.278.5344.1806 CASPubMedWeb of Science®Google Scholar 34Wu Y, Whitman I, Molmenti E, Moore K, Hippenmeyer P, Perlmutter DH. A lag in intracellular degradation of mutantα1-antitrypsin correlates with the liver disease phenotype in homozygous PiZZ α1-antitrypsin deficiency. Proc Natl Acad Sci USA 1994; 91: 9014–8. 10.1073/pnas.91.19.9014 CASPubMedWeb of Science®Google Scholar 35Choudhury P, Liu Y, Bick RJ, Sifers RN. Intracellular association between UDP-glucose: Glycoprotein glucosyltransferase and an incompletely folded variant of α1-antitrypsin. J Biol Chem 1997; 272: 13446–51. 10.1074/jbc.272.20.13446 CASPubMedWeb of Science®Google Scholar 36Geller SA, Nichols WS, Dycaico MJ, Felts KA, Sorge JA. Histopathology of α1-antitrypsin liver disease in a transgenic mouse model. Hepatology 1990; 12: 40–7. 10.1002/hep.1840120108 CASPubMedWeb of Science®Google Scholar 37Geller SA, Nichols WS, Kim SS, et al. Hepatocarcinogenesis is the sequel to hepatitis in Z #2α1-antitrypsin transgenic mice: Histopathological and DNA ploidy studies. Hepatology 1994; 19: 389–97. 10.1002/hep.1840190218 CASPubMedWeb of Science®Google Scholar 38Chisari FV. Hepatitis B virus transgenic mice: Insights into the virus and the disease. Hepatology 1995; 22: 1317–25. Web of Science®Google Scholar 39Raposo G, van Santen HM, Liejendekker R, Geuze HJ, Ploegh HL. Misfolded major histocompatibility complex class I molecules accumulate in an expanded ER-Golgi intermediate compartment. J Cell Biol 1995; 131: 1403–19. 10.1083/jcb.131.6.1403 CASPubMedWeb of Science®Google Scholar 40Dunn WA. Studies on the mechanism of autophagy: Formation of autophagic vacuole. J Cell Biol 1991; 110: 1923–33. 10.1083/jcb.110.6.1923 PubMedWeb of Science®Google Scholar 41Sidrauski C, Cox S, Walter P. tRNA ligase is required for regulated mRNA splicing in the unfolded protein response. Cell 1996; 87: 405–13. 10.1016/S0092-8674(00)81361-6 CASPubMedWeb of Science®Google Scholar 42Cox JS, Walter P. A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response. Cell 1996; 87: 391–404. 10.1016/S0092-8674(00)81360-4 CASPubMedWeb of Science®Google Scholar 43Sidrauski C, Walter P. The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell 1997; 90: 1031–39. 10.1016/S0092-8674(00)80369-4 CASPubMedWeb of Science®Google Scholar 44Frand AR, Kaiser CA. The ERO1 gene of yeast is required for oxidation of protein dithiols in the endoplasmic reticulum. Mol Cell 1998; 1: 161–70. 10.1016/S1097-2765(00)80017-9 CASPubMedWeb of Science®Google Scholar 45Pollard MG, Travers KJ, Weissman JS. Ero1p: A novel and ubiquitous protein with an essential role in oxidative protein folding in the endoplasmic reticulum. Mol Cell 1998; 1: 171–82. 10.1016/S1097-2765(00)80018-0 CASPubMedWeb of Science®Google Scholar 46Perlmutter DH, Schlesinger MJ, Pierce JA, Punsal PI, Schwartz AL. Synthesis of stress proteins is increased in people with homozygous PiZZ α1-antitrypsin deficiency and liver disease. J Clin Invest 1989; 84: 1555–61. 10.1172/JCI114332 CASPubMedWeb of Science®Google Scholar 47Pahl HL, Sester M, Gurgert H-G, Baeuerle PA. Activation of transcription factor NF-κB by the adenovirus E3/19K protein requires its ER retention. J Cell Biol 1996; 132: 511–22. 10.1083/jcb.132.4.511 CASPubMedWeb of Science®Google Scholar 48Wilson-Cox D. Alpha-1-antitrypsin deficiency. In: CB Scriver, AL Beaudet, WS Sly, D Valle, eds. The metabolic basis of inherited disease. 6th ed. New York: McGraw-Hill, 1989: 2409–37. Google Scholar 49Schwaiblmair M, Vogelmeier C, Fruhmann G. Long-term augmentation therapy in twenty patients with severe alpha-1-antitrypsin deficiency-three-year follow-up. Respiration 1997; 64: 10–5. 10.1159/000196636 CASPubMedWeb of Science®Google Scholar 50Seersholm N, Wencker M, Banik N, et al. Doesα1-antitrypsin augmentation therapy slow the annual decline in FEV1 in patients with severe hereditary α1-antitrypsin deficiency? Eur Respir J 1997; 10: 2260–63. 10.1183/09031936.97.10102260 CASPubMedWeb of Science®Google Scholar 51Trulock EP. Lung transplantation forα1-antitrypsin deficiency in emphysema. Chest 1996; 110: 284S–94S. 10.1378/chest.110.6_Supplement.284S CASPubMedWeb of Science®Google Scholar 52Casavilla FA, Reyes J, Tzakis A, et al. Liver transplantation for neonatal hepatitis as compared to the other two leading indications for liver transplantation in children. Hepatology 1994; 21: 1035–39. 10.1016/S0168-8278(05)80614-2 Web of Science®Google Scholar 53Crystal RG. Alpha-1-antitrypsin deficiency, emphysema and liver disease: Genetic basis and strategies for therapy. J Clin Invest 1990; 95: 1343–52. 10.1172/JCI114578 Web of Science®Google Scholar 54Wilson JKM. Molecular medicine: Adenoviruses as gene-delivery vehicles. N Engl J Med 1996; 335: 1185–87. 10.1056/NEJM199605023341809 Web of Science®Google Scholar 55Savransky E, Hytiroglou P, Harpaz N, Thung SN, Johnson EM. Correcting the PiZ defect in the α1-antitrypsin gene of human cells by targeted homologous recombination. Lab Invest 1994; 70: 676–83. CASPubMedWeb of Science®Google Scholar 56Castanotto D, Rossi JJ, Sarver N. Antisense catalytic RNAs as therapeutic agents. Adv Pharmacol 1994; 25: 289–317. 10.1016/S1054-3589(08)60435-4 CASPubMedGoogle Scholar 57Rhim JA, Sandgen EP, Degen JL, Brinster RL. Replacement of disease mouse liver by hepatic cell transplantation. Science 1994; 263: 1149–52. 10.1126/science.8108734 CASPubMedWeb of Science®Google Scholar 58Overturf K, Al-Dhalimy M, Tanguay R, et al. Hepatocytes corrected by gene therapy are selected in vivo in a murine model of hereditary tyrosinaemia type I. Nat Genet 1996; 12: 266–73. 10.1038/ng0396-266 CASPubMedWeb of Science®Google Scholar 59Gaczynska M, Rock KL, Goldber AL. Gamma-interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes. Nature 1993; 365: 264–7. 10.1038/365264a0 CASPubMedWeb of Science®Google Scholar 60Ciechanover A. The ubiquitin-proteasome proteolytic pathway. Cell 1994; 79: 13–21. 10.1016/0092-8674(94)90396-4 CASPubMedWeb of Science®Google Scholar 61Groll M, Ditzel L, Lowe J, et al. Structure of 20S proteasome from yeast at 2.4A resolution. Nature 1997; 386: 463–71. 10.1038/386463a0 CASPubMedWeb of Science®Google Scholar 62Hilt W, Wolf DH. Proteasomes: Destruction as a programme. Trends Biochem Sci 1996; 21: 96–102. 10.1016/S0968-0004(96)10012-8 CASPubMedWeb of Science®Google Scholar 63Tanaka K, Tsurumi C. The 26S proteasome: Subunits and functions. Mol Biol Rep 1997; 24: 3–11. 10.1023/A:1006876904158 CASPubMedWeb of Science®Google Scholar 64Bordallo J, Plemper RK, Finger A, Wolf DH. Der3p/Hrd1p is required for endoplasmic reticulum associated degradation of misfolded luminal and integral membrane proteins. Mol Biol Cell 1998; 9: 209–22. 10.1091/mbc.9.1.209 CASPubMedWeb of Science®Google Scholar 65Knop M, Finger A, Braun T, Hellmuth K, Wolf DH. Der1, a novel protein specifically required for endoplasmic reticulum degradation in yeast. EMBO J 1996; 15: 753–63. 10.1002/j.1460-2075.1996.tb00411.x CASPubMedWeb of Science®Google Scholar 66Lindmark B, Millward-Sadler H, Callea F, Eriksson S. Hepatocyte inclusions of alpha-1-antichymotrypsin in a patient with partial deficiency of α1-antichymotrypsin and chronic liver disease. Histopathology 1990; 16: 221–5. 10.1111/j.1365-2559.1990.tb01107.x CASPubMedWeb of Science®Google Scholar 67Wetsel RA, Kulics J, Lokki M-L, Kiepiela P, Akama H, Johnson CAC, Densen P, et al. Type II human complement C2 deficiency. J Biol Chem 1996; 271: 5824–31. 10.1074/jbc.271.10.5824 CASPubMedWeb of Science®Google Scholar 68Ault BH, Schmidt BZ, Fowler NL, et al. Human factor H deficiency. Mutations in framework cysteine residues and block in H protein secretion and intracellular catabolism. J Biol Chem 1997; 272: 25168–75. 10.1074/jbc.272.40.25168 CASPubMedWeb of Science®Google Scholar 69Callea F, deVos R, Togni R, Taranico R, Vanstapel MJ, Desmet VJ. Fibrinogen inclusions in liver cells: A new type of ground-glass hepatocyte. Immune light and electron microscopic characterization. Histopathology 1986; 10: 65–73. 10.1111/j.1365-2559.1986.tb02461.x CASPubMedWeb of Science®Google Scholar 70Miura O, Aoki N. Impaired secretion of mutantα2-plasmin inhibitor (α2-PI-Nara) from COS-7 and HepG2 cells: Molecular and cellular basis for hereditary deficiency of α2-plasmin inhibitor. Blood 1990; 75: 1092–96. 10.1182/blood.V75.5.1092.1092 CASPubMedWeb of Science®Google Scholar 71Yamamoto K, Tamimoto M, Emi N, Matsushita T, Takamatsu J, Saito H. Impaired secretion of the elongated mutant of protein C (protein C-Nagoya). J Clin Invest 1992; 90: 2439–46. 10.1172/JCI116135 CASPubMedWeb of Science®Google Scholar 72Hobbs HH, Russell DW, Brown MS, Goldstein JL. The LDL receptor locus in familial hypercholesterolemia: Mutational analysis of a membrane protein. Annu Rev Genet 1990; 24: 133–77. 10.1146/annurev.ge.24.120190.001025 CASPubMedWeb of Science®Google Scholar 73Cheng SH, Gregory RJ, Marshall J, Paul S, Souza DW. White GA, O'Riordan CR, et al. Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 1990; 63: 827–34. 10.1016/0092-8674(90)90148-8 CASPubMedWeb of Science®Google Scholar 74Sandhoff K, Conzelmann E, Neufeld EF, Kaback MM, Suzuki K. The Gm2 gangliosidoses. In: CR Scriver, AL Beaudet, WS Sly, D Valle, eds. The metabolic basis of inherited disease. 6th ed. New York: McGraw-Hill 1989: 1807–39. Google Scholar 75Sharp D, Blinderman L, Combs KA, et al. Cloning and gene defects in microsomal triglyceride transfer protein associated with abetalipoproteinemia. Nature 1993; 365: 65–9. 10.1038/365065a0 CASPubMedWeb of Science®Google Scholar 76Vesa J, Hellsten E, Verkruyse LA, et al. Mutations in the palmitoyl protein thioesterase gene causing infantile neuronal ceroid lipofuscinosis. Nature 1995; 376: 584–7. 10.1038/376584a0 CASPubMedWeb of Science®Google Scholar 77Fransen JAM, Hauri H-P, Ginsel LA, Naim HY. Naturally occurring mutations in intestinal sucrase-isomaltase provide evidence for the existence of an intracellular sorting signal in the isomaltase subunit. J Cell Biol 1991; 115: 45–57. 10.1083/jcb.115.1.45 CASPubMedWeb of Science®Google Scholar 78Kim PS, Swon O-Y, Arvan P. An endoplasmic reticulum storage disease causing congenital goiter with hypothyroidism. J Cell Biol 1996; 133: 517–27. 10.1083/jcb.133.3.517 CASPubMedWeb of Science®Google Scholar 79Prockop DJ, Chu M-L, DeWet W, et al. Mutations in osteogenesis imperfecta leading to the synthesis of abnormal type I procollagens. Ann NY Acad Sci 1985; 460: 289–97. 10.1111/j.1749-6632.1985.tb51176.x CASPubMedWeb of Science®Google Scholar 80Schmale H, Bahnsen U, Richter D. Structure and expression of the vasopressin precursor gene in central diabetes insipidus. Ann NY Acad Sci 1993; 689: 74–82. 10.1111/j.1749-6632.1993.tb55538.x CASPubMedWeb of Science®Google Scholar 81Gow A, Southwood CM, Lazzarini RA. Disrupted proteolipid protein trafficking results in oligodendrocyte apoptosis in an animal model of Pelizaeus-Merzbacher disease. J Cell Biol 1998; 140: 925–34. 10.1083/jcb.140.4.925 CASPubMedWeb of Science®Google Scholar Volume27, Issue1July 1998Pages 65-74 ReferencesRelatedInformation
Referência(s)