Cadmium(II) adsorption by recyclable Zeolite-Loaded Hydrogel: Extension to the removal of Cadmium(II) from contaminated soil
2024; Elsevier BV; Volume: 492; Linguagem: Inglês
10.1016/j.cej.2024.151842
ISSN1873-3212
AutoresHanjing Xu, Ziqing Ou, Wenyan Li, Tian Hu, Yulong Zhang, Huijuan Xu, Jinjin Wang, Yongtao Li,
Tópico(s)Graphene and Nanomaterials Applications
ResumoExcessive cadmium(II) (Cd(II)) in soil has gravely jeopardized global ecosystem stability and human health. The removal of Cd(II) is a permanent cure to remediate Cd(II)-contaminated soil. Herein, a recyclable removal material, zeolite@cellulose-poly(acrylamide) hydrogel (Z@CA) was developed. Batch adsorption experiments and characterisations (SEM-EDS, FTIR, XRD, and XPS) were conducted to explore the adsorption capacity and mechanism of Z@CA. A pot experiment was established to evaluate the effect of Z@CA on soil Cd(II) remediation and Cd(II) toxicity in water spinach. The results showed that in aqueous solutions, the maximum adsorption capacity of Cd(II) by Z@CA was 84.4 mg·g−1. Electrostatic attraction, ion exchange, and surface complexation collectively facilitated Cd(II) capture by Z@CA. Even after five adsorption–desorption cycles, Z@CA maintained a Cd(II) removal efficiency of 89.88 %. The results of the pot experiment showed that after applying Z@CA (2.5 w/w) in soil for 21 days, the content of bioavailable Cd(II) and total Cd(II) significantly decreased by 59.38 % and 1.75 %, respectively. The recovery rate of Z@CA reached 94.77 % and maintained its original intact structure. In addition, the Cd(II) content of water spinach was reduced by 91.43 % compared to the treatment without Z@CA, the weight, height, and relative chlorophyll content reaching 1.34, 1.73, and 1.49 times that of the treatment without Z@CA. The ideal application of Z@CA provides novel approaches and insights into the remediation of Cd(II)-contaminated soils.
Referência(s)