Fostering Microbial Activity and Diversity in Agricultural Systems
2024; Wiley; Volume: 69; Issue: 7 Linguagem: Inglês
10.1002/csan.21344
ISSN2325-3584
AutoresOm Prakash Ghimire, Ariana Lazo, Binaya Parajuli, Jaya Nepal,
Tópico(s)Soil Carbon and Nitrogen Dynamics
ResumoCSA NewsEarly View STUDENTS Fostering Microbial Activity and Diversity in Agricultural Systems Adopting Better Management Practices and Strategies: Part 2 Om Prakash Ghimire, Om Prakash Ghimire Graduate Research Assistant Department of Plant and Environmental Sciences, Clemson UniversitySearch for more papers by this authorAriana Lazo, Ariana Lazo Graduate Research Assistant Department of Agronomy, Purdue UniversitySearch for more papers by this authorBinaya Parajuli, Binaya Parajuli Graduate Research Assistant Department of Plant and Environmental Sciences, Clemson UniversitySearch for more papers by this authorJaya Nepal, Jaya Nepal Postdoctoral Associate, Soil and Crop Sciences School of Integrative Plant Science, Cornell UniversitySearch for more papers by this author Om Prakash Ghimire, Om Prakash Ghimire Graduate Research Assistant Department of Plant and Environmental Sciences, Clemson UniversitySearch for more papers by this authorAriana Lazo, Ariana Lazo Graduate Research Assistant Department of Agronomy, Purdue UniversitySearch for more papers by this authorBinaya Parajuli, Binaya Parajuli Graduate Research Assistant Department of Plant and Environmental Sciences, Clemson UniversitySearch for more papers by this authorJaya Nepal, Jaya Nepal Postdoctoral Associate, Soil and Crop Sciences School of Integrative Plant Science, Cornell UniversitySearch for more papers by this author First published: 21 June 2024 https://doi.org/10.1002/csan.21344Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References Abd-Alla, M. H., El-Enany, A. W. E., Nafady, N. A., Khalaf, D. M., & Morsy, F. M. (2014). Synergistic interaction of Rhizobium leguminosarum bv. viciae and arbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for faba bean (Vicia faba L.) in alkaline soil. Microbiological research, 169(1), 49–58. 10.1016/j.micres.2013.07.007 CASPubMedWeb of Science®Google Scholar Aiad, M. A., Amer, M. M., Khalifa, T. H., Shabana, M. M., Zoghdan, M. G., Shaker, E. M., … & Kheir, A. M. (2021). Combined application of compost, zeolite and a raised bed planting method alleviate salinity stress and improve cereal crop productivity in arid regions. Agronomy, 11(12), 2495. 10.3390/agronomy11122495 CASGoogle Scholar Akanmu, A. O., Babalola, O. O., Venturi, V., Ayilara, M. S., Adeleke, B. S., Amoo, A. E., … & Glick, B. R. (2021). Plant disease management: leveraging on the plant-microbe-soil interface in the biorational use of organic amendments. Frontiers in Plant Science, 12, 700507. 10.3389/fpls.2021.700507 PubMedGoogle Scholar Blanco-Canqui, H., Mikha, M. M., Presley, D. R., & Claassen, M. M. (2011). Addition of cover crops enhances no-till potential for improving soil physical properties. Soil Science Society of America Journal, 75(4), 1471–1482. 10.2136/sssaj2010.0430 CASWeb of Science®Google Scholar Borowik, A., & Wyszkowska, J. (2016). Soil moisture as a factor affecting the microbiological and biochemical activity of soil. Plant, Soil and Environment, 62(6), 250–255. 10.17221/158/2016-PSE CASWeb of Science®Google Scholar Cazzaniga, S. G., Braat, L., van den Elsen, S., Lombaers, C., Visser, J., Obinu, L., … & Helder, J. (2023). Pinpointing the distinctive impacts of ten cover crop species on the resident and active fractions of the soil microbiome. Applied Soil Ecology, 190, 105012. 10.1016/j.apsoil.2023.105012 Google Scholar Cesarano, G., De Filippis, F., La Storia, A., Scala, F., & Bonanomi, G. (2017). Organic amendment type and application frequency affect crop yields, soil fertility and microbiome composition. Applied Soil Ecology, 120, 254–264. 10.1016/j.apsoil.2017.08.017 Web of Science®Google Scholar Chavarría, D.N., Verdenelli, R.A., Serri, D.L., Restovich, S.B., Andriulo, A.E., Meriles, J.M., & Vargas-Gil, S. (2016). Effect of cover crops on microbial community structure and related enzyme activities and macronutrient availability. European journal of soil biology, 76, 74–82. 10.1016/j.ejsobi.2016.07.002 CASWeb of Science®Google Scholar Conn, K. L., & Lazarovits, G. (1999). Impact of animal manures on verticillium wilt, potato scab, and soil microbial populations. Canadian Journal of Plant Pathology, 21(1), 81–92. 10.1080/07060661.1999.10600089 Google Scholar Elnahal, A. S., El-Saadony, M. T., Saad, A. M., Desoky, E. S. M., El-Tahan, A. M., Rady, M. M., … & El-Tarabily, K. A. (2022). The use of microbial inoculants for biological control, plant growth promotion, and sustainable agriculture: A review. European Journal of Plant Pathology, 162(4), 759–792. 10.1007/s10658-021-02393-7 Web of Science®Google Scholar Francis, F., Jacquemyn, H., Delvigne, F., & Lievens, B. (2020). From diverse origins to specific targets: role of microorganisms in indirect pest biological control. Insects, 11(8), 533. 10.3390/insects11080533 PubMedWeb of Science®Google Scholar Gadhave, K. R., Hourston, J. E., & Gange, A. C. (2016). Developing soil microbial inoculants for pest management: can one have too much of a good thing? Journal of chemical ecology, 42, 348–356. 10.1007/s10886-016-0689-8 CASPubMedWeb of Science®Google Scholar Garland, G., Bünemann, E. K., Oberson, A., Frossard, E., & Six, J. (2017). Plant-mediated rhizospheric interactions in maize-pigeon pea intercropping enhance soil aggregation and organic phosphorus storage. Plant and Soil, 415, 37–55. 10.1007/s11104-016-3145-1 CASWeb of Science®Google Scholar Haynes, R. J., & Naidu, R. (1998). Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review. Nutrient Cycling in Agroecosystems, 51, 123–137. 10.1023/A:1009738307837 Web of Science®Google Scholar Hu, J., Wei, Z., Friman, V. P., Gu, S. H., Wang, X. F., Eisenhauer, N., … & Jousset, A. (2016). Probiotic diversity enhances rhizosphere microbiome function and plant disease suppression. MBio, 7 (6). https://doi.org/10.1128/mbio.01790-16 10.1128/mbio.01790?16 Google Scholar Hungria, M., Franchini, J. C., Brandao-Junior, O., Kaschuk, G., & Souza, R. A. (2009). Soil microbial activity and crop sustainability in a long-term experiment with three soil-tillage and two crop-rotation systems. Applied Soil Ecology, 42(3), 288–296. 10.1016/j.apsoil.2009.05.005 Google Scholar Jangid, K., Williams, M. A., Franzluebbers, A. J., Sanderlin, J. S., Reeves, J. H., Jenkins, M. B., … & Whitman, W. B. (2008). Relative impacts of land-use, management intensity and fertilization upon soil microbial community structure in agricultural systems. Soil Biology and Biochemistry, 40(11), 2843–2853. 10.1016/j.soilbio.2008.07.030 CASWeb of Science®Google Scholar Karlen, D. L., Veum, K. S., Sudduth, K. A., Obrycki, J. F., & Nunes, M. R. (2019). Soil health assessment: Past accomplishments, current activities, and future opportunities. Soil and Tillage Research, 195, 104365. 10.1016/j.still.2019.104365 Web of Science®Google Scholar Khaitov, B., Allanov, K., Islam, K. R., & Park, K. W. (2019). Bio-inoculant improves nitrogen-use efficiency and cotton yield in saline soils. Journal of Plant Nutrition and Soil Science, 182(3), 393–400. 10.1002/jpln.201800063 CASWeb of Science®Google Scholar Kremer, R. J., & Veum, K. S. (2020). Soil biology is enhanced under soil conservation management. In soil and water conservation: A celebration of 75 years (pp. 203–211). Soil and Water Conservation Society. Google Scholar Lal, R. (1974). Soil temperature, soil moisture and maize yield from mulched and unmulched tropical soils. Plant and Soil, 40, 129–143. 10.1007/BF00011415 CASWeb of Science®Google Scholar Li, J., Wang, J., Liu, H., Macdonald, C. A., & Singh, B. K. (2022). Application of microbial inoculants significantly enhances crop productivity: a meta-analysis of studies from 2010 to 2020. Journal of Sustainable Agriculture and Environment, 1(3), 216–225. 10.1002/sae2.12028 Google Scholar Liu, H., Qi, Y., Wang, J., Jiang, Y., & Geng, M. (2021). Synergistic effects of crop residue and microbial inoculant on soil properties and soil disease resistance in a Chinese Mollisol. Scientific Reports, 11(1), 24225. 10.1038/s41598-021-03799-3 CASPubMedGoogle Scholar Lo, C. C. (2010). Effect of pesticides on soil microbial community. Journal of Environmental Science and Health Part B, 45(5), 348–359. 10.1080/03601231003799804 CASPubMedGoogle Scholar Lopes, M. J. D. S., Dias-Filho, M. B., & Gurgel, E. S. C. (2021). Successful plant growth-promoting microbes: inoculation methods and abiotic factors. Frontiers in Sustainable Food Systems, 5, 606454. 10.3389/fsufs.2021.606454 Google Scholar Maharjan, B., Das, S., Nielsen, R., & Hergert, G. W. (2021). Maize yields from manure and mineral fertilizers in the 100-year-old Knorr–Holden Plot. Agronomy Journal, 113(6), 5383–5397. 10.1002/agj2.20713 CASWeb of Science®Google Scholar May, A., Coelho, L. F., Pedrinho, A., Batista, B. D., Mendes, L. W., Mendes, R., … & Vilela, E. S. D. (2023). The use of indigenous bacterial community as inoculant for plant growth promotion in soybean cultivation. Archives of Agronomy and Soil Science, 69(1), 135–150. 10.1080/03650340.2021.1964017 CASGoogle Scholar Megali, L., Schlau, B., & Rasmann, S. (2015). Soil microbial inoculation increases corn yield and insect attack. Agronomy for Sustainable Development, 35, 1511–1519. 10.1007/s13593-015-0323-0 Google Scholar Meng, L., Sun, T., Li, M., Saleem, M., Zhang, Q., & Wang, C. (2019). Soil-applied biochar increases microbial diversity and wheat plant performance under herbicide fomesafen stress. Ecotoxicology and Environmental Safety, 171, 75–83. 10.1016/j.ecoenv.2018.12.065 CASPubMedGoogle Scholar Mulumba, L. N., & Lal, R. (2008). Mulching effects on selected soil physical properties. Soil and Tillage Research, 98(1), 106–111. 10.1016/j.still.2007.10.011 Web of Science®Google Scholar O'donnell, A. G., Seasman, M., Macrae, A., Waite, I., & Davies, J. T. (2001). Plants and fertilisers as drivers of change in microbial community structure and function in soils. Plant and Soil, 232, 135–145. 10.1023/A:1010394221729 CASWeb of Science®Google Scholar Ozlu, E., & Kumar, S. (2018). Response of soil organic carbon, pH, electrical conductivity, and water stable aggregates to long-term annual manure and inorganic fertilizer. Soil Science Society of America Journal, 82(5), 1243–1251. 10.2136/sssaj2018.02.0082 CASWeb of Science®Google Scholar Pellegrino, E., Piazza, G., Helgason, T., & Ercoli, L. (2022). Microbiome structure and interconnection in soil aggregates across conservation and conventional agricultural practices allow to identify main prokaryotic and fungal taxa related to soil functioning. Soil Biology and Biochemistry, 175, 108833. 10.1016/j.soilbio.2022.108833 CASGoogle Scholar Peralta, A. L., Sun, Y., McDaniel, M. D., & Lennon, J. T. (2018). Crop rotational diversity increases disease suppressive capacity of soil microbiomes. Ecosphere, 9(5), e02235. 10.1002/ecs2.2235 Web of Science®Google Scholar Poeplau, C., & Don, A. (2015). Carbon sequestration in agricultural soils via cultivation of cover crops–A meta-analysis. Agriculture, Ecosystems & Environment, 200, 33–41. 10.1016/j.agee.2014.10.024 CASWeb of Science®Google Scholar Qin, W., Hu, C., & Oenema, O. (2015). Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: a meta-analysis. Scientific Reports, 5(1), 16210. 10.1038/srep16210 CASPubMedWeb of Science®Google Scholar Rani, L., Thapa, K., Kanojia, N., Sharma, N., Singh, S., Grewal, A. S., … & Kaushal, J. (2021). An extensive review on the consequences of chemical pesticides on human health and environment. Journal of Cleaner Production, 283, 124657. 10.1016/j.jclepro.2020.124657 CASWeb of Science®Google Scholar Rayne, N., & Aula, L. (2020). Livestock manure and the impacts on soil health: A review. Soil Systems, 4(4), 64. 10.3390/soilsystems4040064 CASWeb of Science®Google Scholar Rieke, E. L., Cappellazzi, S. B., Cope, M., Liptzin, D., Mac Bean, G., Greub, K. L., … & Honeycutt, C. W. (2022). Linking soil microbial community structure to potential carbon mineralization: A continental scale assessment of reduced tillage. Soil Biology and Biochemistry, 168, 108618. 10.1016/j.soilbio.2022.108618 CASWeb of Science®Google Scholar Sabir, M. S., Shahzadi, F., Ali, F., Shakeela, Q., Niaz, Z., & Ahmed, S. (2021). Comparative effect of fertilization practices on soil microbial diversity and activity: an overview. Current Microbiology, 78, 3644–3655. 10.1007/s00284-021-02634-2 CASPubMedWeb of Science®Google Scholar Salamanca, L. R. (2015). Sanitation is critical to prevent plant diseases. Part 2: Field sanitation. Michigan State University Extension. https://bit.ly/3Va4i9I Google Scholar Schneider, S. K., Cavers, C. G., Duke, S. E., Schumacher, J. A., Schumacher, T. E., & Lobb, D. A. (2021). Crop responses to topsoil replacement within eroded landscapes. Agronomy Journal, 113(3), 2938–2949. 10.1002/agj2.20635 CASGoogle Scholar Schneider, S. K., Sutradhar, A. K., Duke, S. E., Lehman, R. M., Schumacher, T. E., & Lobb, D. A. (2023). Key soil properties and their relationships with crop yields as affected by soil–landscape rehabilitation. Agronomy Journal, 115(5), 2404–2423. 10.1002/agj2.21428 Web of Science®Google Scholar Siebielec, S., Siebielec, G., Klimkowicz-Pawlas, A., Gałązka, A., Grządziel, J., & Stuczyński, T. (2020). Impact of water stress on microbial community and activity in sandy and loamy soils. Agronomy, 10(9), 1429. 10.3390/agronomy10091429 CASGoogle Scholar Sun, L., Wang, S., Narsing Rao, M. P., Shi, Y., Lian, Z. H., Jin, P. J., … & Wei, D. (2023). The shift of soil microbial community induced by cropping sequence affect soil properties and crop yield. Frontiers in Microbiology, 14, 1095688. 10.3389/fmicb.2023.1095688 PubMedGoogle Scholar Thapa, V.R., Ghimire, R., Acosta-Martínez, V., Marsalis, M.A., & Schipanski, M.E. (2021). Cover crop biomass and species composition affect soil microbial community structure and enzyme activities in semiarid cropping systems. Applied Soil Ecology, 157, 103735. 10.1016/j.apsoil.2020.103735 Web of Science®Google Scholar Tian, L., Yu, S., Zhang, L., Dong, K., & Feng, B. (2022). Mulching practices manipulate the microbial community diversity and network of root‑associated compartments in the Loess Plateau. Soil and Tillage Research, 223, 105476. 10.1016/j.still.2022.105476 Web of Science®Google Scholar Tian, X. L., Wang, C. B., Bao, X. G., Wang, P., Li, X. F., Yang, S. C., … & Li, L. (2019). Crop diversity facilitates soil aggregation in relation to soil microbial community composition driven by intercropping. Plant and Soil, 436, 173–192. 10.1007/s11104-018-03924-8 CASWeb of Science®Google Scholar Van Groenigen, K. J., Bloem, J., Bååth, E., Boeckx, P., Rousk, J., Bodé, S., … & Jones, M. B. (2010). Abundance, production and stabilization of microbial biomass under conventional and reduced tillage. Soil Biology and Biochemistry, 42(1), 48–55. 10.1016/j.soilbio.2009.09.023 CASWeb of Science®Google Scholar Van Horn, D. J., Okie, J. G., Buelow, H. N., Gooseff, M. N., Barrett, J. E., & Takacs-Vesbach, C. D. (2014). Soil microbial responses to increased moisture and organic resources along a salinity gradient in a polar desert. Applied and environmental microbiology, 80(10), 3034–3043. 10.1128/AEM.03414-13 CASPubMedWeb of Science®Google Scholar Veum, K. S., Kremer, R. J., Sudduth, K. A., Kitchen, N. R., Lerch, R. N., Baffaut, C., … & Sadler, E. J. (2015). Conservation effects on soil quality indicators in the Missouri Salt River Basin. Journal of Soil and Water Conservation, 70(4), 232–246. 10.2489/jswc.70.4.232 Web of Science®Google Scholar Wan, J., Wang, X., Yang, T., Wei, Z., Banerjee, S., Friman, V. P., … & Shen, Q. (2021). Livestock manure type affects microbial community composition and assembly during composting. Frontiers in Microbiology, 12, 621126. 10.3389/fmicb.2021.621126 PubMedWeb of Science®Google Scholar Wang, L., & Li, X. (2019). Steering soil microbiome to enhance soil system resilience. Critical reviews in microbiology, 45(5-6), 743–753. 10.1080/1040841X.2019.1700906 CASPubMedWeb of Science®Google Scholar Williams, A., Börjesson, G., & Hedlund, K. (2013). The effects of 55 years of different inorganic fertiliser regimes on soil properties and microbial community composition. Soil Biology and Biochemistry, 67, 41–46. 10.1016/j.soilbio.2013.08.008 CASWeb of Science®Google Scholar Wu, J., Wang, H., Li, G., Wu, J., Gong, Y., Wei, X., & Lu, Y. (2021). Responses of CH4 flux and microbial diversity to changes in rainfall amount and frequencies in a wet meadow in the Tibetan Plateau. Catena, 202, 105253. 10.1016/j.catena.2021.105253 CASWeb of Science®Google Scholar Yu, Y., Zhang, Q., Kang, J., Xu, N., Zhang, Z., Deng, Y., … & Qian, H. (2024). Effects of organic fertilizers on plant growth and the rhizosphere microbiome. Applied and Environmental Microbiology, 90(2), e01719-e01723. 10.1128/aem.01719-23 PubMedGoogle Scholar Zhang, C., Lin, Z., Que, Y., Fallah, N., Tayyab, M., Li, S., … & Zhang, H. (2021). Straw retention efficiently improves fungal communities and functions in the fallow ecosystem. BMC Microbiology, 21(1), 52. 10.1186/s12866-021-02115-3 CASPubMedGoogle Scholar Zhang, S., Wang, Y., Sun, L., Qiu, C., Ding, Y., Gu, H., … & Ding, Z. (2020). Organic mulching positively regulates the soil microbial communities and ecosystem functions in tea plantation. BMC Microbiology, 20(1), 103. 10.1186/s12866-020-01794-8 PubMedGoogle Scholar Zhou, Y., Yang, Z., Liu, J., Li, X., Wang, X., Dai, C., … & Li, X. (2023). Crop rotation and native microbiome inoculation restore soil capacity to suppress a root disease. Nature Communications, 14(1), 8126. 10.1038/s41467-023-43926-4 CASPubMedGoogle Scholar Early ViewOnline Version of Record before inclusion in an issue ReferencesRelatedInformation
Referência(s)