Outro Revisado por pares

Nonequilibrium Molecular Dynamics

2000; Wiley; Linguagem: Catalão

10.1002/9780470125915.ch5

ISSN

1934-5372

Autores

Christopher J. Mundy, Sundaram Balasubramanian, Ken Bagchi, Mark E. Tuckerman, Glenn Martyna, Michael L. Klein,

Tópico(s)

Phase Equilibria and Thermodynamics

Resumo

Nonequilibrium Molecular Dynamics Christopher J. Mundy, Christopher J. Mundy Center for Molecular Modeling and the Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104Search for more papers by this authorSundaram Balasubramanian, Sundaram Balasubramanian Chemistry and Physics of Materials Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur P.O., Bangalore 560 064, India,Search for more papers by this authorKen Bagchi, Ken Bagchi Center for Molecular Modeling and the Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104Search for more papers by this authorMark E. Tuckerman, Mark E. Tuckerman Department of Chemistry and Courant Institute of Mathematical Sciences, New York University, New York, New York 10003Search for more papers by this authorGlenn J. Martyna, Glenn J. Martyna Department of Chemistry, Indiana University, Bloomington, Indiana 47405Search for more papers by this authorMichael L. Klein, Michael L. Klein Center for Molecular Modeling and the Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104Search for more papers by this author Christopher J. Mundy, Christopher J. Mundy Center for Molecular Modeling and the Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104Search for more papers by this authorSundaram Balasubramanian, Sundaram Balasubramanian Chemistry and Physics of Materials Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur P.O., Bangalore 560 064, India,Search for more papers by this authorKen Bagchi, Ken Bagchi Center for Molecular Modeling and the Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104Search for more papers by this authorMark E. Tuckerman, Mark E. Tuckerman Department of Chemistry and Courant Institute of Mathematical Sciences, New York University, New York, New York 10003Search for more papers by this authorGlenn J. Martyna, Glenn J. Martyna Department of Chemistry, Indiana University, Bloomington, Indiana 47405Search for more papers by this authorMichael L. Klein, Michael L. Klein Center for Molecular Modeling and the Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104Search for more papers by this author Book Editor(s):Kenny B. Lipkowitz, Kenny B. LipkowitzSearch for more papers by this authorDonald B. Boyd, Donald B. BoydSearch for more papers by this author First published: 01 January 2000 https://doi.org/10.1002/9780470125915.ch5Citations: 16Book Series:Reviews in Computational Chemistry AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary This chapter contains sections titled: Introduction Molecular Dynamics and Equilibrium Statistical Mechanics Nonequilibrium Molecular Dynamics and Linear Response Numerical Implementation of SLLOD Dynamics Applications of Shear Flow Conclusions and Future Prospects Appendix 1: Time Evolution of the Jacobian Appendix 2: Geometric Derivation of the Generalized Liouville Equation References T. P. Lybrand, in Reviews in Computational Chemistry, K. B. Lipkowitz and D. B. Boyd, Eds., VCH Publishers, New York, 1990), Vol. 1, pp. 295–320. Computer Simulation of Biomolecular Systems Using Molecular Dynamics and Free Energy Perturbation Methods. T. P. Straatsma, in Reviews in Computational Chemistry, K. B. Lipkowitz and D. B. Boyd, Eds., VCH Publishers, New York, 1996, Vol. 9, pp. 81–127. Free Energy by Molecular Simulation. R. Kutteh and T. P. Straatsma, in Reviews in Computational Chemistry, K. B. Lipkowitz and D. B. Boyd, Eds., Wiley-VCH, New York, 1998, Vol. 13, pp. 75–136. Molecular Dynamics with General Holonomic Constraints and Applications to Internal Coordinate Constraints. J. C. Shelley and D. R. Bérard, in Reviews in Computational Chemistry, K. B. Lipkowitz and D. B. Boyd, Eds., Wiley-VCH, New York, 1998, Vol. 12, pp. 137–205. Computer Simulation of Water Physisorption at Metal-Water Interfaces. B. Alder and T. Wainwright, Phys. Rev. Lett., 18, 988 (1967). Velocity Autocorrelations for Hard Spheres. B. Alder, D. Gass, and T. Wainwright, J. Chem. Phys., 53, 3813 (1970). Studies in Molecular Dynamics. VIII. The Transport Coefficients of a Hard-Sphere Fluid. A. W. Lees and S. F. Edwards, J. Phys. C, 5, 1921 (1972). The Computer Study of Transport Processes Under Extreme Conditions. H. C. Andersen, J. Chem. Phys., 72, 2384 (1980). Molecular Dynamics Simulations at Constant Pressure and/or Temperature. W. Hoover, D. Evans, R. Hickman, A. Ladd, W. Ashurst, and B. Moran, Phys. Rev. A, 22, 1690 (1980). Lennard-Jones Triple-Point Bulk and Shear Viscosities. Green-Kubo Theory, Hamiltonian Mechanics, and Nonequilibrium Molecular Dynamics. D. Evans and G. Morriss, Phys. Rev. A., 30, 1528 (1984). Nonlinear-Response Theory for Steady Planar Couette Flow. S.-I. Pai, Viscous Flow Theory, Vol. 1, Laminar Flow, Van Nostrand, Princeton, NJ, 1956. S. Y. Liem, D. Brown, and J. H. R. Clarke, Phys. Rev. A, 45, 3706 (1992). Investigation of the Homogeneous Shear Nonequilibrium Molecular Dynamics Method. J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys., 54, 5237 (1971). Role of Repulsive Forces in Determining the Equilibrium Structure of Simple Liquids. D. J. Evans and G. P. Morriss, Statistical Mechanics of Nonequilibrium Liquids, Academic Press, London, 1990. R. Car and M. Parrinello, Phys. Rev. Lett., 55, 2471 (1985). Unified Approach for Molecular Dynamics and Density Functional Theory. M. Parrinello and A. Rahman, Phys. Rev. Lett., 45, 1196 (1980). Crystal Structure and Pair Potentials: A Molecular Dynamics Study. M. E. Tuckerman, C. J. Mundy, and M. L. Klein, Phys. Rev. Lett., 78, 2042 (1997). Towards a Statistical Thermodynamics of Steady States. H. Goldstein, Classical Mechanics, Addison-Wesley, Reading, MA, 1981. D. A. McQuarrie, Statistical Mechanics, HarperCollins, New York, 1976. K. Huang, Statistical Mechanics, 2nd ed., Wiley, New York, 1987. B. J. Berne and G. D. Harp, Adv. Chem. Phys., 17, 63 (1970). On the Calculation of Time Correlation Functions. B. A. Dubrovin, A. T. Fomenko, and S. P. Novikov, Modern Geometry—Methods and Applications Part I: The Geometry of Surfaces Transformation Groups and Fields, Springer Verlag, New York, 1984. G. Gerlich, Physica, 69, 458 (1973). The Generalised Liouville Equation. L. Andrey, Nuovo Cimento, 69B, 136 (1982). Ideal Gas in Empty Space. J. R. Waldram, The Theory of Thermodynamics, Cambridge University Press, Cambridge, U.K., 1985. S. Nosé and M. L. Klein, Mol. Phys., 50, 1055 (1983). Constant Pressure Molecular Dynamics for Molecular Systems. S. Nosé, J Chem. Phys., 81, 511 (1984). A Unified Formulation of the Constant Temperature Molecular Dynamics Methods. W. G. Hoover, Phys. Rev. A, 31, 1695 (1985). Canonical Dynamics: Equilibrium Phase Space Distributions. G. J. Martyna, M. L. Klein, and M. E. Tuckerman, J. Chem. Phys., 97, 2635 (1992). The Canonical Ensemble Via Continuous Dynamics. G. J. Martyna, M. E. Tuckerman, D. J. Tobias, and M. L. Klein, Mol. Phys., 87, 1117 (1996). Explicit Reversible Integrators for Extended System Molecular Dynamics. D. J. Tobias, G. J. Martyna, and M. L. Klein, J. Phys. Chem., 97, 12959 (1993). Molecular Dynamics Simulations of a Protein in the Canonical Ensemble. M. E. Tuckerman, B. J. Berne, G. J. Martyna, and M. L. Klein, J. Chem. Phys., 99, 2796 (1993). Efficient Molecular Dynamics and Hybrid Monte Carlo Algorithms for Path Integrals. M. E. Tuckerman, D. Marx, M. L. Klein, and M. Parrinello, J. Chem. Phys., 104, 5579 (1996). Efficient and General Algorithms for Path Integral Car-Parrinello Molecular Dynamics. W. G. Hoover and B. L. Holian, Phys. Lett. A, 211, 253 (1996). Kinetic Moments Method for the Canonical Ensemble Distribution. G. J. Martyna, D. J. Tobias, and M. L. Klein, J. Chem. Phys., 101, 4177 (1994). Constant Pressure Molecular Dynamics Algorithms. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford, 1987. C. J. Thompson, Mathematical Statistical Mechanics, Princeton University Press, Princeton, NJ, 1972. V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, New York, 1978. S. Whitaker, Introduction to Fluid Dynamics, Englewood Cliffs, NJ, 1986. M. Gillan and M. Dixon, J. Phys. C, 16, 869 (1983). The Calculation of Thermal Conductivities by Perturbed Molecular Dynamics Simulation. R. Kubo, J. Phys. Soc. Jpn., 12, 570 (1957). Statistical Mechanical Theory of Irreversible Processes. I. General Theory and Simple Application to Magnetic and Conduction Problems. M. Green, J. Chem. Phys., 22, 398 (1954). Markoff Random Processes and the Statistical Mechanics of Time-Dependent Phenomena. D. Chandler, Modern Statistical Mechanics, Oxford University Press, New York, 1987. S. Balasubramanian, C. J. Mundy, and M. L. Klein, J. Chem. Phys., 105, 11190 (1996). Shear Viscosity of Polar Fluids: Molecular Dynamics Calculations of Water. K. Bagchi, S. Balasubramanian, and M. L. Klein, J. Chem. Phys., 107, 8561 (1997). The Effects of Pressure on Structural and Dynamical Properties of Associated Liquids: Molecular Dynamics Calculations for the Extended Simple Point Charge Model of Water. G. Ciccotti, C. Pierleoni, and J. P. Ryckaert, in Microscopic Simulations of Complex Hydrodynamic Phenomena, M. Mareschal and B. L. Holian, Eds., Plenum Press, New York, 1992. M. E. Tuckerman, C. J. Mundy, S. Balasubramanian, and M. L. Klein, J. Chem. Phys., 106, 5615 (1997). Modified Nonequilibrium Molecular Dynamics for Fluid Flows with Energy Conservation. M. Kaku, Quantum Field Theory: A Modern Introduction, Oxford University Press, New York, 1993. H. F. Trotter, Proc. Amer. Math. Soc., 10, 545 (1959). On the Product of Semi-Groups and Operators. A. Friedman and S. P. Auerbach, J. Comput. Phys., 93, 171 (1991). Numerically Induced Stochasticity. S. P. Auerbach and A. Friedman, J. Comput. Phys., 93, 189 (1991). Long Time Behaviour of Numerically Computed Orbits: Small and Intermediate Timestep Analysis of One Dimensional Systems. C. J. Mundy, J. I. Siepmann, and M. L. Klein, J. Chem. Phys., 103, 10192 (1995). Decane Under Shear—A Molecular Dynamics Study Using Reversible NVT-SLLOD and NPTSLLOD Algorithms. J. Chem. Phys., 104, 7797 (1996). Correction. H. Yoshida, Phys. Lett. A, 150, 262 (1990). Construction of Higher Order Sympletic Integrators. M. Suzuki, J. Math. Phys., 32, 400 (1991). General Theory of Fractal Path Integrals with Applications to Many Body Theories and Statistical Physics. G. Arfken and H. Weber, Mathematical Methods for Physicists, Academic, San Deigo, 1995. J. P. Ryckaert, A. Bellemans, G. Ciccotti, and G. V. Paolini, Phys. Rev. A, 39, 259 (1989). Evaluation of Transport Coefficients of Simple Fluids by Molecular Dynamics: Comparison of Green-Kubo and Nonequilibrium Approaches for Shear Viscosity. R. Bhupathiraju, P. T. Cummings, and H. D. Cochran, Mol. Phys., 88, 1665 (1996). An Efficient Parallel Algorithm for Non-Equilibrium Simulations of Very Large Systems in Planar Couette Flow. K. Bagchi, S. Balasubramanian, C. J. Mundy, and M. L. Klein, J. Chem. Phys., 105, 11183 (1996). Profile Unbiased Thermostat with Dynamical Streaming Velocities. K. Stephan and K. Lucas, Viscosity of Dense Fluids, Plenum, New York, 1979. B. Wunderlich, M. Moeller, J. Grebowicz, and H. Baur, Adv. Polym. Sci., 87, 50 (1988). Conformational Motion and Disorder in Low and High Molecular Mass Crystals. M. Mareschal, J. P. Ryckaert, and A. Bellemans, Mol. Phys., 61, 33 (1987). The Shear Viscosity of n-Butane by Equilibrium and Non-equilibrium Molecular Dynamics. R. Edberg, G. P. Morriss, and D. J. Evans, J. Chem. Phys., 86, 4555 (1987). Rheology of n-Alkanes by Nonequilibrium Molecular Dynamics. S. Chynoweth, U. C. Klomp, and Y. Michopoulos, J. Chem. Phys., 95, 3024 (1991). Rheology of n-Alkanes by Nonequilibrium Molecular Dynamics-Comment. H. Luo and C. Hoheisel, Phys. Rev. E, 47, 3956 (1993). Thermodynamics and Transport Properties of n-Butane Computed by Molecular Dynamics and a Rigid Interaction Model. J. I. Siepmann, S. Karaborni, and B. Smit, Nature, 365, 330 (1993). Simulating the Critical Behaviour of Complex Fluids. S. T. Cui, P. T. Cummings, and H. D. Cochran, Fluid Phase Equilibria, 141, 45 (1997). Configurational Bias Gibbs Ensemble Monte Carlo Simulation of Vapor-Liquid Equilibria of Linear and Short-Branched Alkanes. C. J. Mundy, J. I. Siepmann, and M. L. Klein, J. Chem. Phys., 102, 3376 (1995). Calculation of the Shear Viscosity of Decane Using a Reversible Multiple Time-Step Algorithm. C. J. Mundy, S. Balasubramanian, K. Bagchi, J. I. Siepmann, and M. L. Klein, Faraday Discuss. Chem. Soc., 104, 17 (1996). Equilibrium and Non-equilibrium Simulation Studies of Fluid Alkanes in Bulk and at Interfaces. S. A. Gupta, H. D. Cochran, and P. T. Cummings, J. Chem. Phys., 107, 10316 (1997). Shear Behavior of Squalane and Tetracosane Under Extreme Confinement. 1. Model, Simulation Method, and Interfacial Slip. S. A. Gupta, H. D. Cochran, and P. T. Cummings, J. Chem. Phys., 107, 10327 (1997). Shear Behavior of Squalane and Tetracosane Under Extreme Confinement. 2. Confined Film Structure. S. A. Gupta, H. D. Cochran, and P. T. Cummings, J. Chem. Phys., 107, 10335 (1997). Shear Behavior of Squalane and Tetracosane Under Extreme Confinement. 3. Effect of Confinement on Viscosity. A. Wallqvist and R. D. Mountain, in Reviews in Computational Chemistry, K. B. Lipkowitz and D. B. Boyd, Eds., Wiley-VCH, New York, 1999, Vol. 13, pp. 183–247. Molecular Models of Water: Derivation and Description. P. A. Thompson and M. O. Robbins, Phys. Rev. A, 41, 6830 (1990). Shear Flow Near Solids–Epitaxial Order and and Flow Boundary Conditions. P. A. Thompson, G. S. Grest, and M. O. Robbins, Phys. Rev. Lett., 68, 3448 (1992). Phase Transitions and Universal Dynamics in Confined Films. L. Bocquet and J. L. Barrat, Phys. Rev. Lett., 70, 2726 (1993). Hydrodynamic Boundary Conditions and Correlation Function of Confined Fluids. L. Bocquet and J. L. Barrat, Phys. Rev. E, 49, 3079 (1994). Hydrodynamic Boundary Conditions, Correlation Functions and Kubo Relations for Confined Fluids. C. J. Mundy, S. Balasubramanian, and M. L. Klein, J. Chem. Phys., 105, 3211 (1996). Hydrodynamic Boundary Conditions for Confined Fluids Via a Nonequilibrium Molecular Dynamics Simulation. P. G. Wolynes, Phys. Rev. A, 13, 1235 (1976). Hydrodynamic Boundary Conditions and Mode-Mode Coupling Theory. M. K. Kogan, Rarefied Gas Dynamics, Plenum Press, New York, 1959. P. G. De Gennes, C. R. Acad. Sci. Paris B, 288, 219 (1979). Viscometric Flows of Tangled Polymers. D. J. Evans and G. P. Morriss, Phys. Rev. Lett., 56, 2172 (1986). Shear Thickening and Turbulence in Simple Fluids. D. J. Barber and R. Loudon, An Introduction to the Properties of Condensed Matter, Cambridge University Press, Cambridge, 1989. D. J. Evans, S. T. Cui, H. J. M. Hanley, and G. C. Straty, Phys. Rev. A. 46, 6731 (1992). Conditions for the Existence of a Reentrant Solid Phase in a Sheared Atomic Fluid. K. P. Travis, P. J. Daivis, and D. J. Evans, J. Chem. Phys., 103, 10638 (1995). Thermostats for Molecular Fluids Undergoing Shear Flow: Applications to Liquid Chlorine. J. Chem. Phys., 105, 3893 (1996). Addition/Correction: Thermostats for Molecular Fluids Undergoing Shear Flow: Applications to Liquid Chlorine. P. Padilla and S. Toxvaerd, J. Chem. Phys., 103, 716 (1995). Shear Flow at the Liquid-Liquid Interface. M. E. Tuckerman, G. J. Martyna, and B. J. Berne, J. Chem. Phys., 97, 1990 (1992). Reversible Multiple Time Scale Molecular Dynamics. J. J. Erpenbeck, Phys. Rev. Lett., 52, 1333 (1984). Shear Viscosity of the Hard-Sphere Fluid Via Nonequilibrium Molecular Dynamics. W. Loose and S. Hess, Rheol. Acta, 28, 91 (1989). Rheology of Dense Model Fluids Via Nonequilibrium Molecular Dynamics: Shear Thinning and Ordering Transition. W. Loose and G. Ciccotti, Phys. Rev. A., 15, 3859 (1992). Temperature and Temperature Control in Nonequilibrium Molecular Dynamics Simulations of the Shear Flow in Dense Fluids. W. Xue and G. Grest, Phys. Rev. Lett., 64, 419 (1990). Shear Induced Alignment of Colloidal Particles in the Presence of a Shear Flow. M. J. Stevens, M. O. Robbins, and J. F. Belak, Phys. Rev. Lett., 66, 3004 (1991). Shear Melting of Colloids—A Nonequilibrium Phase Diagram. D. M. Heyes and P. J. Mitchell, Mol. Phys., 84, 261 (1995). Nonequilibrium Molecular and Brownian Dynamics Simulations of Shear Thinning of Inverse Power Fluids. S. R. Rastogi, N. J. Wagner, and S. R. Lustig, J. Chem. Phys., 104, 9234 (1996). Rheology, Self-Diffusion, and Microstructure of Charge Colloids Under Simple Shear by Massively Parallel Nonequilibrium Brownian Dynamics. A. A. Rigos and G. Wilemski, J Phys. Chem., 96, 3981 (1992). Brownian Dynamics Simulations of An Order-Disorder Transition in Sheared Sterically Stabilized Colloidal Suspension. R. Cook and G. Wilemski, J. Phys. Chem., 96, 4023 (1992). Packing Constraints and Number Dependence in Simulations of Sheared Colloidal Suspensions. T. Yamada and S. Nosé, Phys. Rev. A, 42, 6282 (1990). Two-Phase Coexistence of String and Liquid Phases: Nonequilibrium Molecular-Dynamics Simulations of Couette Flow. G. Ciccotti and G. Jacucci, Phys. Rev. Lett., 35, 789 (1975). Direct Computation of Dynamical Response by Molecular Dynamics: the Mobility of a Charged Lennard-Jones Particle. G. Ciccotti, G. Jacucci, and I. R. McDonald, J. Stat. Phys., 21, 1 (1979). "Thought-Experiments" by Molecular Dynamics. G. P. Morriss and D. J. Evans, Phys. Rev. A, 35, 792 (1987). Application of Transient Correlation Functions to Shear Flow Far From Equilibrium. D. J. Evans and G. P. Morriss, Phys. Rev. A, 36, 4119 (1987). Asymptotic Nonlinear Stress Tensor in Small Periodic Systems Undergoing Couette Flow. D. J. Evans and G. P. Morriss, Phys. Rev. A, 38, 4142 (1988). Transient-Time-Correlation Functions and the Rheology of Fluids. W. T. Ashurst and W. G. Hoover, Phys. Rev. B, 14, 1465 (1976). Microscopic Fracture Studies in the Two-Dimensional Triangular Lattice. R. A. Kendall, R. J. Harrison, R. J. Littlefield, and M. F. Guest, in Reviews in Computational Chemistry, K. B. Lipkowitz and D. B. Boyd, Eds., VCH Publishers, New York, 1995, Vol. 6, pp. 209–316. High Performance Computing in Computational Chemistry: Methods and Machines. F. F. Abraham, D. Brodbeck, R. A. Rafey, and W. E. Rudge, Phys. Rev. Lett., 73, 272 (1994). Instability in Fracture—A Computer Simulation Investigation. J. Fineberg, S. P. Gross, M. Marder, and H. L. Swinney, Phys. Rev. Lett, 67, 457 (1991). Instability on Dynamic Fracture. J. Fineberg, S. P. Gross, M. Marder, and H. L. Swinney, Phys. Rev. B, 45, 5146 (1992). Instability in Propagation of Fast Cracks. S. P. Gross, J. Fineberg, M. Marder, W. D. McCormick, and H. L. Swinney, Phys. Rev. Lett., 71, 3162 (1993). Acoustic Emissions From Rapidly Moving Cracks. S. J. Zhou, D. M. Beazley, P. S. Lomdahl, and B. L. Holian, Phys. Rev. Lett., 78, 479 (1997). Large-Scale Molecular Dynamics Simulations of Three-Dimensional Ductile Failure. W. Li, R. K. Kalia, and P. Vashishta, Phys. Rev. Lett., 77, 2241 (1996). Amorphization and Fracture in Silicon Diselenide Nanowires—A Molecular Dynamics Study. A. Omeltchenko, J. Yu, R. K. Kalia, and P. Vashishta, Phys. Rev. Lett., 78, 2148 (1997). Crack Front Propagation and Fracture in a Graphite Sheet: A Molecular-Dynamics Study on Parallel Computers. D. W. Brenner, O. A. Shenderova, and D. A. Areshkin, in Reviews in Computational Chemistry, K. B. Lipkowitz and D. B. Boyd, Eds., Wiley-VCH, New York, 1998, Vol. 12, pp. 207239. Quantum-Based Analytic Interatomic Forces and Materials Simulation. M. Sprik, U. Roethlisberger, and M. Klein, J. Phys. Chem. B, 101, 2745 (1997). Structure of Solid Poly(tetrafluoroethylene): A Computer Simulation Study of Chain Orientational, Translational, and Conformational Disorder. S. Campbell, G. Luengo, V. Srdanov, F. Wudl, and J. Israelachvili, Nature, 382, 520 (1996). Very Low Viscosity at the Solid-Liquid Interface Induced by C60 Monolayers. B. Schutz, Geometrical Methods of Mathematical Physics, Cambridge University Press, Cambridge, 1980. Citing Literature Reviews in Computational Chemistry, Volume 14 ReferencesRelatedInformation

Referência(s)