Proteína capsidial do Rupestris stem pitting-associated vírus: seqüenciamento do gene, expressão em Escherichia coli, purificação e produção de anti-soro policlonal
2008; Linguagem: Inglês
ISSN
2639-6459
Autores Tópico(s)Insect Resistance and Genetics
ResumoPEREIRA, A.C.B. Capsid protein of Rupestris stem pitting-associated virus: sequencing of the gene, expression in E. coli, purification and production of polyclonal antiserun. Sao Jose do Rio Preto, 2008. 66p. Dissertacao (Mestrado em Microbiologia) – Instituto de Biociencias, Letras e Ciencias Exatas, Universidade Estadual Paulista “Julio de Mesquita Filho”. Rupestris stem pitting (RSP), a component of the rugose wood (RW) complex, is one of the most graft-transmissible grapevine virus diseases with great economic importance for viticulture . Rupestris stem pitting-associated virus (RSPaV), genus Foveavirus within the family Flexiviridae, has been associated with this disease. This work reports the sequencing of the coat protein (CP) gene of a brazilian an isolate of RSPaV (RSPaV-SP), its expression in Escherichia coli, purification of the recombinant coat protein and production of a polyclonal antiserum in rabbit. CP gene was found to be 780nt long, with a 256 deduced amino acid sequence encoding a predicted protein of 28 kDa. In filogenetic analysis, with RSPaV-SP and other variants of the virus, four groups were found and the sequence of RSPaV-SP showed the highest identity with the variant RSPaV-BS. The recombinant coat protein was purified by affinity chromatography and showed a molecular weight of 32kDa (4 kDa from a small vector sequence plus 28 kDa for the CP of RSPaV-SP). The antiserum proved specific for detection of the recombinant protein by Western Blot, and did not react with heterologous proteins starting at a dilution of 1:4000. At this dilution, the antiserum was effective in the virus detection of leaf extracts of infected plants and no reaction was observed with extracts from healthy grapevines. Considering that the virus is found at low concentrations in the plants during the seasons of the year, the results obtained so far were highly satisfactory for RSPaV detection. Serological methods have advantages over the biological indexing method, since they are cheaper and can be used in large-scale tests such as ELISA. Experiments using the ELISA technique were not successful. Purification of the native recombinant protein would be an alternative more efective to detect the virus using these technique.
Referência(s)