Capítulo de livro

Staphylococcus aureus Exotoxins

2014; Linguagem: Catalão

10.1128/9781555816513.ch38

Autores

Gregory A. Bohach,

Tópico(s)

Biochemical and Structural Characterization

Resumo

Chapter 38 Staphylococcus aureus Exotoxins Gregory A. Bohach, Gregory A. BohachSearch for more papers by this author Gregory A. Bohach, Gregory A. BohachSearch for more papers by this author Book Editor(s):Vincent A. Fischetti, Vincent A. FischettiSearch for more papers by this authorRichard P. Novick, Richard P. NovickSearch for more papers by this authorJoseph J. Ferretti, Joseph J. FerrettiSearch for more papers by this authorDaniel A. Portnoy, Daniel A. PortnoySearch for more papers by this authorJulian I. Rood, Julian I. RoodSearch for more papers by this author First published: 03 March 2006 https://doi.org/10.1128/9781555816513.ch38 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary This chapter talks about Staphylococcus aureus exotoxins fall into three general groups: (i) membrane-active agents, (ii) pyrogenic toxin superantigens (PTSAgs), and (iii) exfoliative toxins (ETs). Researchers proposed the existence of delta-toxin as the fourth cytolytic S. aureus toxin in 1947. Panton-Valentine leukocidin (PVL) and gamma-toxin are two prototypic bicomponent toxins. Unfortunately, the rapid rate of new toxin discovery has resulted in more than one SE being given the same designation in the literature. Therefore, it is now recommended that nomenclature for new PTSAgs be assigned by the International Nomenclature Committee for Staphylococcal Superantigens prior to publication. The major cytokines induced initially include IL-1, tumor necrosis factors alpha and beta, interferon-γ, and IL-2. The ETs have been conclusively implicated in staphylococcal scalded-skin syndrome (SSSS). Two antigenically distinct forms, designated ETA and ETB, are the best characterized ETs and are produced most frequently by phage group II by S. aureus isolates; strains expressing ETs constitute agr group IV staphylococcal isolates. Lesions in SSSS and mice are characterized by separation of stratum granulosa cells causing intraepidermal skin peeling. References Aarestrup, F. M., H. D. Larsen, N. H. Eriksen, C. S. Elsberg, and N. E. Jensen. 1999. Frequency of alpha- and beta-haemolysin in Staphylococcus aureus of bovine and human origin. A comparison between pheno- and geno-type and variation in phenotypic expression. APMIS 107: 425–430. 10.1111/j.1699-0463.1999.tb01576.x CASPubMedWeb of Science®Google Scholar Ahrens, P., and L. O. Andresen. 2004. Cloning and sequence analysis of genes encoding Staphylococcus hyicus exfoliative toxin types A, B, C, and D. J. Bacteriol. 186: 1833–1837. 10.1128/JB.186.6.1833-1837.2004 CASPubMedWeb of Science®Google Scholar Alber, G., D. K. Hammer, and B. Fleischer. 1990. Relationship between enterotoxic- and T lymphocyte-stimulating activity of staphylococcal enterotoxin B. J. Immunol. 144: 4501–4506. CASPubMedWeb of Science®Google Scholar Alber, G., P. H. Scheuber, B. Reck, B. Sailer-Kramer, A. Hartmann, and D. K. Hammer. 1989. Role of substance P in immediate-type skin reactions induced by staphylococcal enterotoxin B in unsensitized monkeys. J. Allergy Clin. Immunol. 84: 880–885. 10.1016/0091-6749(89)90383-7 CASPubMedWeb of Science®Google Scholar Al-Daccak, R., K. Mehindate, F. Damdoumi, P. Etongue-Mayer, H. Nilsson, P. Antonsson, M. Sundstrom, M. Dohlsten, R. P. Sekaly, and W. Mourad. 1998. Staphylococcal enterotoxin D is a promiscuous superantigen offering multiple modes of interactions with the MHC class II receptors. J. Immunol. 160: 225–232. CASPubMedWeb of Science®Google Scholar Alouf, J. E. 1977. Cell membranes and cytolytic bacterial toxins, p. 220–270. In P. Cuatrecasas (ed.), Receptors and Recognition, series B, vol. 1. The Specificity and Action of Animal, Bacterial and Plant Toxins. Chapman and Hall Ltd., London, United Kingdom Google Scholar Amagai, M., N. Matsuyoshi, Z. H. Wang, C. Andl, and J. R. Stanley. 2000. Toxin in bullous impetigo and staphylococcal scalded-skin syndrome targets desmoglein 1. Nat. Med. 6: 1275–1277. 10.1038/81385 CASPubMedWeb of Science®Google Scholar Amagai, M., T. Yamaguchi, Y. Hanakawa, K. Nishifuji, M. Sugai, and J. R. Stanley. 2002. Staphylococcal exfoliative toxin B specifically cleaves desmoglein 1. J. Invest. Dermatol. 118: 845–850. 10.1046/j.1523-1747.2002.01751.x CASPubMedWeb of Science®Google Scholar Arbuthnott, J. P. 1982. Bacterial cytolysins (membranedamaging toxins), p. 107–129. In P. Cohen and S. Heyningen (ed.), Molecular Action of Toxins and Viruses. Elsevier Biomedical Press, Amsterdam, The Netherlands. 10.1016/B978-0-444-80400-6.50009-5 Google Scholar Bailey, C. J., B. P. Lockhart, M. B. Redpath, and T. P. Smith. 1995. The epidermolytic (exfoliative) toxins of Staphylococcus aureus . Med. Microbiol. Immunol. 184: 53–61. 10.1007/BF00221387 CASPubMedWeb of Science®Google Scholar Bailey, C. J., and M. B. Redpath. 1992. The esterolytic activity of epidermolytic toxins. Biochem. J. 284: 177–180. 10.1042/bj2840177 CASPubMedWeb of Science®Google Scholar Bayles, K. W., and J. J. Iandolo. 1989. Genetic and molecular analyses of the gene encoding staphylococcal enterotoxin D. J. Bacteriol. 171: 4799–4806. 10.1128/jb.171.9.4799-4806.1989 CASPubMedWeb of Science®Google Scholar Bhakdi, S., and J. Tranum-Jensen. 1991. Alpha-toxin of Staphylococcus aureus . Microbiol. Rev. 55: 733–751. 10.1128/MMBR.55.4.733-751.1991 CASPubMedWeb of Science®Google Scholar Bohach, G. A., D. J. Fast, R. D. Nelson, and P. M. Schlievert. 1990. Staphylococcal and streptococcal pyrogenic toxins involved in toxic shock syndrome and related illnesses. Crit. Rev. Microbiol. 17: 251–272. 10.3109/10408419009105728 CASPubMedWeb of Science®Google Scholar Bohach, G. A., L. M. Jablonski, C. F. Deobald, Y. I. Chi, and C. V. Stauffacher. 1995. Functional domains of staphylococcal enterotoxins, p. 339–356. In M. Ecklund, J. L. Richard, and K. Mise (ed.), Molecular Approaches to Food Safety: Issues Involving Toxic Microorganisms. Alaken, Inc., Fort Collins, Colo. Google Scholar Boyle, T., V. Lancaster, R. Hunt, P. Gemski, and M. Jett. 1994. Method for simultaneous isolation and quantitation of platelet activating factor and multiple arachidonate metabolites from small samples: analysis of effects of Staphylococcus aureus enterotoxin B in mice. Anal. Biochem. 216: 373–382. 10.1006/abio.1994.1055 CASPubMedWeb of Science®Google Scholar Buerke, M., U. Sibelius, U. Grandel, U. Buerke, F. Grimminger, W. Seeger, J. Meyer, and H. Darius. 2002. Staphylococcus aureus alpha toxin mediates polymorphonuclear leukocyte-induced vasocontraction and endothelial dysfunction. Shock 17: 30–35. 10.1097/00024382-200201000-00006 PubMedWeb of Science®Google Scholar Caiazza, N. C., and G. A. O'Toole. 2003. Alpha-toxin is required for biofilm formation by Staphylococcus aureus . J. Bacteriol. 185: 3214–3217. 10.1128/JB.185.10.3214-3217.2003 CASPubMedWeb of Science®Google Scholar Cavarelli, J., G. Prevost, W. Bourguet, L. Moulinier, B. Chevrier, B. Delagoutte, A. Bilwes, L. Mourey, S. Rifai, Y. Piemont, and D. Moras. 1997. The structure of Staphylococcus aureus epidermolytic toxin A, an atypic serine protease, at 1.7 Å resolution. Structure 5: 813–824. 10.1016/S0969-2126(97)00235-9 CASPubMedWeb of Science®Google Scholar Chintagumpala, M. M., J. A. Mollick, and R. R. Rich. 1991. Staphylococcal toxins bind to different sites on HLA-DR. J. Immunol. 147: 3876–3881. CASPubMedWeb of Science®Google Scholar Choi, Y., B. Kotzin, L. Herron, J. Callahan, P. Marrack, and J. Kappler. 1989. Interaction of Staphylococcus aureus toxin superantigens with human T cells. Proc. Natl. Acad. Sci. USA 86: 8941–8945. 10.1073/pnas.86.22.8941 CASPubMedWeb of Science®Google Scholar Coleman, D. C., J. P. Arbuthnott, H. M. Pomeroy, and T. H. Birkbeck. 1986. Cloning and expression in Escherichia coli and Staphylococcus aureus of the beta-lysin determinant from Staphylococcus aureus: evidence that bacteriophage conversion of beta-lysin activity is caused by insertional inactivation of the beta-lysin determinant. Microb. Pathog. 1: 549–564. 10.1016/0882-4010(86)90040-9 CASPubMedWeb of Science®Google Scholar Colin, D. A., I. Mazurier, S. Sire, and V. Finck-Barbancon. 1994. Interaction of the two components of leukocidin from Staphylococcus aureus with human polymorphonuclear leukocyte membranes: sequential binding and subsequent activation. Infect. Immun. 62: 3184–3188. 10.1128/IAI.62.8.3184-3188.1994 CASPubMedWeb of Science®Google Scholar Colin, D. A., O. Meunier, L. Staali, H. Monteil, and G. Prevost. 1996. Action mode of two components poreforming leucotoxins from Staphylococcus aureus . Med. Microbiol. Immunol. 185: 107–114. Google Scholar Cooney, J., Z. Kienle, T. J. Foster, and P. W. O'Toole. 1993. The gamma-hemolysin locus of Staphylococcus aureus comprises three linked genes, two of which are identical to the genes for the F and S components of leukocidin. Infect. Immun. 61: 678–771. 10.1128/IAI.61.2.768-771.1993 Web of Science®Google Scholar Deringer, J. R., R. J. Ely, S. R. Monday, C. V. Stauffacher, and G. A. Bohach. 1997 Vβ-dependent stimulation of bovine and human T cells by host-specific staphylococcal enterotoxins. Infect. Immun. 65: 4048–4054. 10.1128/IAI.65.10.4048-4054.1997 CASPubMedWeb of Science®Google Scholar Deringer, J. R., R. J. Ely, C. V. Stauffacher, and G. A. Bohach. 1996. Subtype-specific interactions of type C staphylococcal enterotoxins with the T-cell receptor. Mol. Microbiol. 22: 523–534. 10.1046/j.1365-2958.1996.1381506.x CASPubMedWeb of Science®Google Scholar Dhople, V. M., and R. Nagaraj. 2005. Conformation and activity of delta-lysin and its analogs. Peptides 26: 217–225. 10.1016/j.peptides.2004.09.013 CASPubMedWeb of Science®Google Scholar Dufourc, E. J., J. Dufourcq, T. H. Birkbeck, and J. H. Freer. 1990. δ-Haemolysin from Staphylococcus aureus and model membranes. A solid-state 2H-NMR and 31P-NMR study. Eur. J. Biochem. 187: 581–587. 10.1111/j.1432-1033.1990.tb15340.x CASPubMedWeb of Science®Google Scholar Dziewanowska, K., V. E. Edwards, J. R. Deringer, G. A. Bohach, and D. J. Guerra. 1996. Comparison of the β-toxins from Staphylococcus aureus and Staphylococcus intermedius . Arch. Biochem. Biophys. 335: 102–108. 10.1006/abbi.1996.0486 CASPubMedWeb of Science®Google Scholar Earhart, C. A., D. T. Mitchell, D. L. Murray, D. M. Pinheiro, M. Matsumura, P. M. Schlievert, and D. H. Ohlendorf. Structures of five mutants of toxic shock syndrome toxin-1 with reduced biological activity. Biochemistry 37: 7194–7202. 10.1021/bi9721896 PubMedWeb of Science®Google Scholar Edwards, V. M., J. R. Deringer, S. D. Callantine, C. F. Deobald, P. H. Berger, V. Kapur, C. V. Stauffacher, and G. A. Bohach. 1997. Characterization of the canine type C enterotoxin produced by Staphylococcus intermedius pyoderma isolates. Infect. Immun. 65: 2346–2352. 10.1128/IAI.65.6.2346-2352.1997 CASPubMedWeb of Science®Google Scholar Elwell, M. R., C. T. Liu, R. O. Spertzel, and W. R. Beisel. 1975. Mechanisms of oral staphylococcal enterotoxin B-induced emesis in the monkey. Proc. Soc. Exp. Biol. Med. 148: 424–427. 10.3181/00379727-148-38553 CASPubMedWeb of Science®Google Scholar Essmann, F., H. Bantel, G. Totzke, I. H. Engels, B. Sinha, K. Schulze-Osthoff, and R. U. Janicke. 2003. Staphylococcus aureus alpha-toxin-induced cell death: predominant necrosis despite apoptotic caspase activation. Cell Death Differ. 10: 1260–1272. 10.1038/sj.cdd.4401301 CASPubMedWeb of Science®Google Scholar Fields, B. A., E. L. Malchiodi, H. Li, X. Ysern, C. V. Stauffacher, P. M. Schlievert, K. Karjalainen, and R. A. Mariuzza. 1996. Crystal structure of a T-cell receptor betachain complexed with a superantigen. Nature 384: 188–192. 10.1038/384188a0 CASPubMedWeb of Science®Google Scholar Finck-Barbancon, V., G. Duportail, O. Meunier, and D. A. Colin. 1993. Pore formation by two-component leukocidin from Staphylococcus aureus within the membrane of human polymorphonuclear leukocytes. Biochim. Biophys. Acta 1182: 275–282. 10.1016/0925-4439(93)90069-D CASPubMedWeb of Science®Google Scholar Fitzgerald, J. R., S. D. Reid, E. Ruotsalainen, T. J. Tripp, M. Liu, R. Cole, P. Kuusela, P. M. Schlievert, A. Jarvinen, and J. M. Musser. 2003. Genome diversification in Staphylococcus aureus: molecular evolution of a highly variable chromosomal region encoding the Staphylococcal exotoxin-like family of proteins. Infect. Immun. 71: 2827–2838. 10.1128/IAI.71.5.2827-2838.2003 CASPubMedWeb of Science®Google Scholar Fleischer, B., and C. J. Bailey. 1992. Recombinant epidermolytic (exfoliative) toxin A of Staphylococcus aureus is not a superantigen. Med. Microbiol. Immunol. 180: 273–279. 10.1007/BF00191548 CASPubMedWeb of Science®Google Scholar Florquin, S., and L. Aaldering. 1997. Superantigens: a tool to gain new insight into cellular immunity. Res. Immunol. 148: 373–386. 10.1016/S0923-2494(97)82871-4 CASPubMedWeb of Science®Google Scholar Foster, T. J., M. O'Reilly, P. Phonimdaeng, J. Cooney, A. H. Patel, and A. J. Bramley. 1990. Genetic studies of virulence factors of Staphylococcus aureus. Properties of coagulase and gamma-toxin and the role of alpha-toxin, beta-toxin and protein A in the pathogenesis of S. aureus infections, p. 403–417. In R. P. Novick (ed.), Molecular Biology of the Staphylococci. VCH, Cambridge, New York, N.Y. Web of Science®Google Scholar Fraser, J. D. 1989. High-affinity binding of staphylococcal enterotoxins A and B to HLA-DR. Nature 339: 221–223. 10.1038/339221a0 CASPubMedWeb of Science®Google Scholar Furoda, M., T. Ohta, I. Uchiyama, T. Baba, H. Yuzawa, I. Kobayashi, L. Cui, A. Oguchi, K. Aoki, Y. Nagai, J. Lian, T. Ito, M. Kanamori, H. Matsumaru, A. Maruyama, H. Murakami, A. Hosoyama, Y. Mizutani-Ui, N. K. Takahashi, T. Sawano, R. Inoue, C. Kaito, K. Sekimizu, H. Hirakawa, S. Kuhara, S. Goto, J. Yabuzaki, M. Kanehisa, A. Yamashita, K. Oshima, K. Furuya, C. Yoshino, T. Shiba, M. Hattori, N. Ogasawara, H. Hayashi, and K. Hiramatsu. 2001. Whole genome sequencing of methicillin-resistant Staphylococcus aureus . Lancet 357: 1225–1240. 10.1016/S0140-6736(00)04403-2 PubMedWeb of Science®Google Scholar Gase, K., J. J. Ferretti, C. Primeaux, and W. M. Mc-Shan. 1999. Identification, cloning, and expression of the CAMP factor gene (cfa) of group A streptococci. Infect. Immun. 67: 4725–4731. 10.1128/IAI.67.9.4725-4731.1999 CASPubMedWeb of Science®Google Scholar Gillet, Y., B. Issartel, P. Vanhems, J. C. Fournet, G. Lina, M. Bes, F. Vandenesch, Y. Piemont, N. Brousse, D. Floret, and J. Etienne. 2002. Association between Staphylococcus aureus strains carrying gene for Panton-Valentine leukocidin and highly lethal necrotising pneumonia in young immunocompetent patients. Lancet 359: 753–759. 10.1016/S0140-6736(02)07877-7 CASPubMedWeb of Science®Google Scholar Grundstrom, S., L. Cederbom, A. Sundstedt, P. Scheipers, and F. Ivars. 2003. Superantigen-induced regulatory T cells display different suppressive functions in the presence or absence of natural CD4+CD25+ regulatory T cells in vivo. J. Immunol. 170: 5008–5017. 10.4049/jimmunol.170.10.5008 PubMedWeb of Science®Google Scholar Goerke, C., S. Matias y Papenberg, S. Dasbach, K. Dietz, R. Ziebach, B. C. Kahl, and C. Wolz. 2004. Increased frequency of genomic alterations in Staphylococcus aureus during chronic infection is in part due to phage mobilization. J. Infect. Dis. 189: 724–734. 10.1086/381502 CASPubMedWeb of Science®Google Scholar Gravet, A., D. Colin, R. Keller, H. Giradot, H. Monteil, and G. Prevost. 1998. Characterization of a novel structural member, LukE-LukD, of the bi-component staphylococcal leucotoxins family. FEBS Lett. 436: 202–208. 10.1016/S0014-5793(98)01130-2 CASPubMedWeb of Science®Google Scholar Guillet, V., P. Roblin, S. Werner, M. Coraiola, G. Menestrina, H. Monteil, G. Prevost, and L. Mourey. 2004. Crystal structure of leucotoxin S component: new insight into the staphylococcal beta-barrel pore-forming toxins. J. Biol. Chem. 279: 41028–41037. 10.1074/jbc.M406904200 CASPubMedWeb of Science®Google Scholar Hanakawa, Y., N. M. Schechter, C. Lin, L. Garza, H. Li, T. Yamaguchi, Y. Fudaba, K. Nishifuji, M. Sugai, M. Amagai, and J. R. Stanley. 2002. Molecular mechanisms of blister formation in bullous impetigo and staphylococcal scalded skin syndrome. J. Clin. Invest. 110: 53–60. 10.1172/JCI0215766 CASPubMedWeb of Science®Google Scholar Hanakawa, Y., T. Selwood, D. Woo, C. Lin, N. M. Schechtern, and J. R. Stanley. 2003. Calcium-dependent conformation of desmoglein 1 is required for its cleavage by exfoliative toxin. J. Invest. Dermatol. 121: 383–389. 10.1046/j.1523-1747.2003.12362.x CASPubMedWeb of Science®Google Scholar Harris, T. O., and M. J. Betley. 1995. Biological activities of staphylococcal enterotoxin type A mutants with N-terminal substitutions. Infect. Immun. 63: 2133–2140. 10.1128/IAI.63.6.2133-2140.1995 CASPubMedWeb of Science®Google Scholar Haslinger, B., K. Strangfeld, G. Peters, K. Schulze-Osthoff, and B. Sinha. 2003. Staphylococcus aureus alphatoxin induces apoptosis in peripheral blood mononuclear cells: role of endogenous tumour necrosis factor-alpha and the mitochondrial death pathway. Cell Microbiol. 5: 729–741. 10.1046/j.1462-5822.2003.00317.x CASPubMedWeb of Science®Google Scholar Hildebrand, A., M. Roth, and S. Bhakdi. 1991. Staphylococcus aureus alpha-toxin: dual mechanisms of binding to target cells. J. Biol. Chem. 266: 17195–17200. CASPubMedWeb of Science®Google Scholar Holmberg, S. D., and P. A. Blake. 1984. Staphylococcal food poisoning in the United States. New facts and old misconceptions. JAMA 251: 487–489. 10.1001/jama.1984.03340280037024 CASPubMedWeb of Science®Google Scholar Hovde, C. J., J. C. Marr, M. L. Hoffmann, S. P. Hackett, Y. I. Chi, K. K. Crum, D. L. Stevens, C. V. Stauffacher, and G. A. Bohach. 1994. Investigation of the role of the disulphide bond in the activity and structure of staphylococcal enterotoxin C1. Mol. Microbiol. 13: 897–909. 10.1111/j.1365-2958.1994.tb00481.x CASPubMedWeb of Science®Google Scholar Hudson, K. R., R. E. Tiedemann, R. G. Urban, S. C. Lowe, J. L. Strominger, and J. D. Fraser. 1995. Staphylococcal enterotoxin A has two cooperative binding sites on major histocompatibility complex class II. J. Exp. Med. 182: 711–720. 10.1084/jem.182.3.711 CASPubMedWeb of Science®Google Scholar Jarraud, S., G. J. Lyon, A. M. Figueiredo, L. Gerard, F. Vandenesch, J. Etienne, T. W. Muir, and R. P. Novick. 2000. Exfoliatin-producing strains define a fourth agr specificity group in Staphylococcus aureus . J. Bacteriol. 182: 6517–6522. 10.1128/JB.182.22.6517-6522.2000 CASPubMedWeb of Science®Google Scholar Jardetsky, T. S., J. H. Brown, J. C. Gorga, L. J. Stern, R. G. Urban, Y. I. Chi, C. V. Stauffacher, J. L. Strominger, and D. C. Wiley. 1994. Three-dimensional structure of a human class II histocompatibility molecule complexed with superantigen. Nature 368: 711–718. 10.1038/368711a0 PubMedWeb of Science®Google Scholar Jarraud, S., M. A. Peyrat, A. Lim, A. Tristan, M. Bes, C. Mougel, J. Etienne, F. Vandenesch, M. Bonneville, and G. Lina. 2001. egc, a highly prevalent operon of enterotoxin gene, forms a putative nursery of superantigens in Staphylococcus aureus . J. Immunol. 166: 669–677. 10.4049/jimmunol.166.1.669 CASPubMedWeb of Science®Google Scholar Jarvis, W. D., R. N. Kolesnick, F. A. Fornari, R. S. Traylor, D. A. Gewirtz, and S. Grant. 1994. Induction of apoptotic DNA damage and cell death by activation of the sphingomyelin pathway. Proc. Natl. Acad. Sci. USA 91: 73–77. 10.1073/pnas.91.1.73 CASPubMedWeb of Science®Google Scholar Jonas, D., I. Walev, T. Berger, M. Liebetrau, M. Palmer, and S. Bhakdi. 1994. Novel path to apoptosis: small transmembrane pores created by staphylococcal alpha-toxin in T lymphocytes evoke internucleosomal DNA degradation. Infect. Immun. 62: 1304–1312. 10.1128/IAI.62.4.1304-1312.1994 CASPubMedWeb of Science®Google Scholar Kaneko, J., O. Toshiko, T. Tomita, and Y. Kamio. 1997. Sequential binding of staphylococcal γ-hemolysin to human erythrocytes and complex formation of the hemolysin on the cell surface. Biosci. Biotechnol. Biochem. 61: 846–851. 10.1271/bbb.61.846 CASPubMedWeb of Science®Google Scholar Kappler, J., B. Kotzin, L. Herron, E. W. Gelfand, R. D. Bigler, A. Boylston, S. Carrel, D. N. Posnett, Y. Choi, and P. Marrack. 1989. V beta-specific stimulation of human T cells by staphylococcal toxins. Science 244: 811–813. 10.1126/science.2524876 CASPubMedWeb of Science®Google Scholar Kim, C. S., S. Y. Jeon, Y. G. Min, C. Rhyoo, J. W. Kim, J. B. Yun, S. W. Park, and T. Y. Kwon. 2000. Effects of beta-toxin of Staphylococcus aureus on ciliary activity of nasal epithelial cells. Laryngoscope 110: 2085–2088. 10.1097/00005537-200012000-00021 CASPubMedWeb of Science®Google Scholar Kim, J., R. G. Urban, J. L. Strominger, and D. C. Wiley. 1994. Toxic shock syndrome toxin-1 complexed with a class II major histocompatibility molecule HLA-DR1. Science 266: 1870–1874. 10.1126/science.7997880 CASPubMedWeb of Science®Google Scholar Leder, L., A. Llera, P. M. Lavoie, M. I. Lebedeva, H. Li, R. P. Sekaly, G. A. Bohach, P. J. Gahr, P. M. Schlievert, K. Karjalainen, and R. A. Mariuzza. 1998. A mutational analysis of the binding of staphylococcal enterotoxins B and C3 to the T cell receptor beta chain and major histocompatibility complex class II. J. Exp. Med. 187: 823–833. 10.1084/jem.187.6.823 CASPubMedWeb of Science®Google Scholar Letertre, C., S. Perelle, F. Dilasser, and P. Fach. 2003. Identification of a new putative enterotoxin SEU encoded by the egc cluster of Staphylococcus aureus . J. Appl. Microbiol. 95: 38–43. 10.1046/j.1365-2672.2003.01957.x CASPubMedWeb of Science®Google Scholar Lina, G., G. A. Bohach, S. P. Nair, K. Hiramatsu, E. Jouvin-Marche, and R. Mariuzza, International Nomenclature Committee for Staphylococcal Superantigens. 2004. Standard nomenclature for the superantigens expressed by Staphylococcus . J. Infect. Dis. 189: 2334–2336. 10.1086/420852 PubMedWeb of Science®Google Scholar Lina, G., Y. Piemont, F. Godail-Gamot, M. Bes, M. O. Peter, V. Gauduchon, F. Vandenesch, and J. Etienne. 1999. Involvement of Panton-Valentine leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. Clin. Infect. Dis. 29: 1128–1132. 10.1086/313461 CASPubMedWeb of Science®Google Scholar Low, D. K. R., and J. H. Freer. 1977. Biological effects of highly purified β-lysin (sphingomyelinase C) from Staphylococcus aureus . FEMS Microbiol. Lett. 2: 133–138. 10.1111/j.1574-6968.1977.tb00925.x CASWeb of Science®Google Scholar Mahlknecht, U., M. Herter, M. K. Hoffmann, D. Niethammer, and G. E. Dannecker. 1996. The toxic shock syndrome toxin-1 induces anergy in human T cells in vivo. Hum. Immunol. 45: 42–45. 10.1016/0198-8859(95)00145-X CASPubMedWeb of Science®Google Scholar Marshall, M. J., G. A. Bohach, and D. F. Boehm. 2000. Characterization of Staphylococcus aureus beta-toxin induced leukotoxicity. J. Nat. Toxins 9: 125–138. CASPubMedWeb of Science®Google Scholar Melish, M. E., and L. A. Glasgow. 1970. The staphylococcal scalded skin syndrome: development of an experimental model. N. Engl. J. Med. 282: 1114–1119. 10.1056/NEJM197005142822002 CASPubMedWeb of Science®Google Scholar Mellor, I. R., D. H. Thomas, and M. S. P. Sansom. 1988. Properties of ion channels formed by Staphylococcus aureus δ-toxin. Biochim. Biophys. Acta 942: 280–294. 10.1016/0005-2736(88)90030-2 CASPubMedWeb of Science®Google Scholar Mempel, M., C. Schnopp, M. Hojka, H. Fesq, S. Weidinger, M. Schaller, H. C. Korting, J. Ring, and D. Abeck. 2002. Invasion of human keratinocytes by Staphylococcus aureus and intracellular bacterial persistence represent haemolysin-independent virulence mechanisms that are followed by features of necrotic and apoptotic keratinocyte cell death. Br. J. Dermatol. 146: 943–951. 10.1046/j.1365-2133.2002.04752.x CASPubMedWeb of Science®Google Scholar Menestrina, G., M. D. Serra, and G. Prevost. 2001. Mode of action of beta-barrel pore-forming toxins of the staphylococcal alpha-hemolysin family. Toxicon 39: 1661–1672. 10.1016/S0041-0101(01)00153-2 CASPubMedWeb of Science®Google Scholar Miles, G., L. Movileanu, and H. Bayley. 2002. Subunit composition of a bicomponent toxin: staphylococcal leukocidin forms an octameric transmembrane pore. Protein Sci. 11: 894–902. 10.1110/ps.4360102 CASPubMedWeb of Science®Google Scholar Monday, S. R., and G. A. Bohach. 1999. Genetic, structural, biological, pathophysiological and clinical aspects of Staphylococcus aureus enterotoxins and toxic shock syndrome toxin-1, p. 589–610. In J. E. Alouf and J. H. Freer (ed.), Sourcebook of Bacterial Protein Toxins. Academic Press, London, United Kingdom. Google Scholar Monday, S. R., and G. A. Bohach. 2000. Genes encoding staphylococcal enterotoxins are linked and separated by DNA related to other staphylococcal enterotoxins. J. Nat. Toxins 10: 1–8. Google Scholar Monday, S. R., G. M. Vath, W. A. Ferens, C. Deobald, J. V. Rago, P. J. Gahr, D. Monie, J. J. Iandolo, S. K. Chapes, W. C. Davis, D. H. Ohlendorf, P. M. Schlievert, and G. A. Bohach. 1999. Unique superantigen activity of staphylococcal exfoliative toxins. J. Immunol. 181: 4550–4559. Google Scholar Munson, S. H., M. T. Tremaine, M. J. Betley, and R. A. Welch. 1998. Identification and characterization of staphylococcal enterotoxin types G and I from Staphylococcus aureus . Infect. Immun. 66: 3337–3348. 10.1128/IAI.66.7.3337-3348.1998 CASPubMedWeb of Science®Google Scholar Narita, S., J. Kaneko, J. Chiba, Y. Piemont, S. Jarraud, J. Etienne, and Y. Kamio. 2001. Phage conversion of Panton-Valentine leukocidin in Staphylococcus aureus: molecular analysis of a PVL-converting phage, φSLT. Gene 268: 195–206. 10.1016/S0378-1119(01)00390-0 CASPubMedWeb of Science®Google Scholar Noda, M., and I. Kato. 1991. Leukocidal toxins, p. 243–251. In J. E. Alouf and J. H. Freer (ed.), Sourcebook of Bacterial Protein Toxins. Academic Press, London, United Kingdom. Google Scholar O'Callaghan, R. J., M. C. Callegan, J. M. Moreau, L. C. Green, T. J. Foster, O. M. Hartford, L. S. Engel, and J. M. Hill. 1997. Specific roles of alpha-toxin and beta-toxins during Staphylococcus corneal infection. Infect. Immun. 65: 1571–1578. 10.1128/IAI.65.5.1571-1578.1997 CASPubMedWeb of Science®Google Scholar Omoe, K., K. Imanishi, D. L. Hu, H. Kato, H. Takahashi-Omoe, A. Nakane, T. Uchiyama, and K. Shinagawa. 2004. Biological properties of staphylococcal enterotoxin-like toxin type R. Infect. Immun. 72: 3664–3667. 10.1128/IAI.72.6.3664-3667.2004 CASPubMedWeb of Science®Google Scholar Omoe, K., D. L. Hu, H. Takahashi-Omoe, A. Nakane, and K. Shinagawa. 2003. Identification and characterization of a new staphylococcal enterotoxin-related putative toxin encoded by two kinds of plasmids. Infect. Immun. 71: 6088–6094. 10.1128/IAI.71.10.6088-6094.2003 CASPubMedWeb of Science®Google Scholar Onogawa, T. 2002. Staphylococcal alpha-toxin synergistically enhances inflammation caused by bacterial components. FEMS Immunol. Med. Microbiol. 33: 15–21. 10.1111/j.1574-695X.2002.tb00566.x CASPubMedWeb of Science®Google Scholar Orwin, P. M., J. Fitzgerald, D. Y. Leung, J. A. Gutierrez, G. A. Bohach, and P. M. Schlievert. 2003. Characterization of Staphylococcus aureus enterotoxin L. Infect. Immun. 71: 2916–2919. 10.1128/IAI.71.5.2916-2919.2003 CASPubMedWeb of Science®Google Scholar Orwin, P. M., D. Y. Leung, D. H. Donahue, R. P. Novick, and P. M. Schlievert. 2001. Biochemical and biological properties of Staphylococcal enterotoxin K. Infect. Immun. 69: 360–366. 10.1128/IAI.69.1.360-366.2001 CASPubMedWeb of Science®Google Scholar Orwin, P. M., D. Y. Leung, T. J. Tripp, G. A. Bohach, C. A. Earhart, D. H. Ohlendorf, and P. M. Schlievert. 2002. Characterization of a novel staphylococcal enterotoxin- like superantigen, a member of the group V subfamily of pyrogenic toxins. Biochemistry 41: 14033–14040. 10.1021/bi025977q CASPubMedWeb of Science®Google Scholar Ozawa, T., J. Kaneko, and Y. Kamio. 1995. Essential binding of LukF of staphylococcal γ-hemolysin followed by the binding of HγII for the hemolysis of human erythrocytes. Biosci. Biotech. Biochem. 559: 1181–1183. 10.1271/bbb.59.1181 Google Scholar Ozawa, T., J. Kaneko, H. Narija, K. Izaki, and Y. Kamio. 1994. Inactivation of the γ-hemolysin HγII component by addition of monoganglioside GMI to human erythrocyte. Biosci. Biotech. Biochem. 58: 602–605. 10.1271/bbb.58.602 CASPubMedWeb of Scienc

Referência(s)
Altmetric
PlumX